Yesim Sag Acikel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3844674/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Investigation of tetracycline removal from aqueous solutions using halloysite/chitosan nanocomposites and halloysite nanotubes/alginate hydrogel beads. Environmental Nanotechnology, Monitoring and Management, 2021, 16, 100576.	2.9	7
2	Synthesis and characterization of magnetic halloysite–chitosan nanocomposites: use in the removal of methylene blue in wastewaters. International Journal of Environmental Science and Technology, 2020, 17, 1281-1294.	3.5	21
3	Loading of cancer drug resveratrol to pH-Sensitive, smart, alginate-chitosan hydrogels and investigation of controlled release kinetics. Journal of Drug Delivery Science and Technology, 2019, 53, 101199.	3.0	22
4	Synthesis and Characterization of Magnetic Halloysite–Alginate Beads for the Removal of Lead(II) Ions from Aqueous Solutions. Journal of Polymers and the Environment, 2019, 27, 1971-1987.	5.0	12
5	Investigation of antagonistic and synergistic interactions on simultaneous adsorption of crystal violet and Cu(II) using chitin and chitosan. Desalination and Water Treatment, 2016, 57, 4059-4072.	1.0	5
6	Investigation of mutual interactions of physicochemical parameters on simultaneous Zn(II) bioaccumulation and lipase production of <i>R. delemar</i> . Desalination and Water Treatment, 2015, 53, 3543-3556.	1.0	1
7	Simultaneous copper bioaccumulation, growth and lipase production of <i>Rhizopus delemar</i> in molasses medium: optimisation of environmental conditions using RSM. Chemistry and Ecology, 2014, 30, 39-51.	1.6	1
8	Effects of stirring and aeration rates on lipase production and growth of R. delemar. New Biotechnology, 2012, 29, S195-S196.	4.4	0
9	Equilibrium, hysteresis and kinetics of cadmium desorption from sodium-feldspar using rhamnolipid biosurfactant. Environmental Technology (United Kingdom), 2012, 33, 1857-1868.	2.2	20
10	Use of Biosurfactants in the Removal of Heavy Metal Ions from Soils. Environmental Pollution, 2011, , 183-223.	0.4	15
11	Investigation of sorption/desorption equilibria of heavy metal ions on/from quartz using rhamnolipid biosurfactant. Journal of Environmental Management, 2010, 91, 724-731.	7.8	57
12	Optimization of critical medium components using response surface methodology for lipase production by Rhizopus delemar. Food and Bioproducts Processing, 2010, 88, 31-39.	3.6	70
13	A comparative study for the sorption of Cd(II) by K-feldspar and sepiolite as soil components, and the recovery of Cd(II) using rhamnolipid biosurfactant. Journal of Environmental Management, 2008, 88, 383-392.	7.8	53
14	A comparative study for the sorption of Cd(II) by soils with different clay contents and mineralogy and the recovery of Cd(II) using rhamnolipid biosurfactant. Journal of Hazardous Materials, 2008, 154, 663-673.	12.4	69
15	Removal of zinc ions from a soil component Na-feldspar by a rhamnolipid biosurfactant. Desalination, 2008, 223, 361-365.	8.2	35
16	Sorption of Cd(II) onto kaolin as a soil component and desorption of Cd(II) from kaolin using rhamnolipid biosurfactant. Journal of Hazardous Materials, 2007, 139, 50-56.	12.4	80
17	Biosorption of Pb(II) and Cu(II) by activated sludge in batch and continuous-flow stirred reactors. Bioresource Technology, 2003, 87, 27-33.	9.6	54
18	Application of multicomponent adsorption models to the biosorption of CR(VI), CU(II), and CD(II) ions on rhizopus arrhizus from ternary metal mixtures. Chemical Engineering Communications, 2003, 190, 797-812.	2.6	12

YESIM SAG ACIKEL

#	Article	IF	CITATIONS
19	A COMPARATIVE STUDY FOR THE SORPTION OF Cu(II) IONS BY CHITIN AND CHITOSAN: APPLICATION OF EQUILIBRIUM AND MASS TRANSFER MODELS. Separation Science and Technology, 2002, 37, 2801-2822.	2.5	16
20	Ternary biosorption equilibria of chromium(VI), copper(II), and cadmium(II) onRhizopus arrhizus. Separation Science and Technology, 2002, 37, 279-309.	2.5	55
21	Kinetic studies on sorption of Cr(VI) and Cu(II) ions by chitin, chitosan and Rhizopus arrhizus. Biochemical Engineering Journal, 2002, 12, 143-153.	3.6	261
22	BIOSORPTION OF HEAVY METALS BY FUNGAL BIOMASS AND MODELING OF FUNGAL BIOSORPTION: A REVIEW. Separation and Purification Reviews, 2001, 30, 1-48.	0.8	134
23	Recent trends in the biosorption of heavy metals: A review. Biotechnology and Bioprocess Engineering, 2001, 6, 376-385.	2.6	80
24	Use of a mathematical model for prediction of the performance of the simultaneous biosorption of Cr(VI) and Fe(III) on Rhizopus arrhizus in a semi-batch reactor. Hydrometallurgy, 2001, 59, 77-87.	4.3	34
25	Application of equilibrium and mass transfer models to dynamic removal of Cr(VI) ions by Chitin in packed column reactor. Process Biochemistry, 2001, 36, 1187-1197.	3.7	76
26	Evaluation, interpretation, and representation of three-metal biosorption equilibria using a fungal biosorbent. Process Biochemistry, 2001, 37, 35-50.	3.7	51
27	Mass transfer and equilibrium studies for the sorption of chromium ions onto chitin. Process Biochemistry, 2000, 36, 157-173.	3.7	131
28	Mono and multi-component biosorption of heavy metal ions on Rhizopus arrhizus in a CFST. Process Biochemistry, 2000, 35, 787-799.	3.7	22
29	Determination of the biosorption activation energies of heavy metal ions on Zoogloea ramigera and Rhizopus arrhizus. Process Biochemistry, 2000, 35, 801-807.	3.7	64
30	Determination of the biosorption heats of heavy metal ions on Zoogloea ramigera and Rhizopus arrhizus. Biochemical Engineering Journal, 2000, 6, 145-151.	3.6	167
31	Equilibrium parameters for the single- and multicomponent biosorption of Cr(VI) and Fe(III) ions on R. arrhizus in a packed column. Hydrometallurgy, 2000, 55, 165-179.	4.3	38
32	Lead, copper and zinc biosorption from bicomponent systems modelled by empirical Freundlich isotherm. Applied Microbiology and Biotechnology, 2000, 53, 338-341.	3.6	28
33	Biosorption of Lead(II), Nickel(II), and Copper(II) onRhizopus arrhizusfrom Binary and Ternary Metal Mixtures. Separation Science and Technology, 2000, 35, 2601-2617.	2.5	24
34	An overview of the studies about heavy metal adsorption process by microorganisms on the lab. scale in Turkey. Process Metallurgy, 1999, 9, 307-316.	0.1	2
35	Simultaneous Biosorption of Chromium(VI) and Copper(II) onRhizopus Arrhizusin Packed Column Reactor: Application of the Competitive Freundlich Mode. Separation Science and Technology, 1999, 34, 3155-3171.	2.5	12
36	Multi-component biosorption of lead, copper and zinc ions on R. arrhizus. Process Metallurgy, 1999, 9, 399-408.	0.1	1

YESIM SAG ACIKEL

#	Article	IF	CITATIONS
37	A comparative study for the simultaneous biosorption of Cr(VI) and Fe(III) on C. vulgaris and R. arrhizus: application of the competitive adsorption models. Process Biochemistry, 1998, 33, 273-281.	3.7	60
38	The simultaneous biosorption of Cr(VI), Fe(III) and Cu(II) on Rhizopus arrhizus. Process Biochemistry, 1998, 33, 571-579.	3.7	27
39	The simultaneous biosorption of Cu(II) and Zn on Rhizopus arrhizus: application of the adsorption models. Hydrometallurgy, 1998, 50, 297-314.	4.3	84
40	The simultaneous biosorption process of lead(II) and nickel(II) on Rhizopus arrhizus. Process Biochemistry, 1997, 32, 591-597.	3.7	30
41	The selective biosorption of chromium(VI) and copper(II) ions from binary metal mixtures by R. arrhizus. Process Biochemistry, 1996, 31, 561-572.	3.7	115
42	Fully competitive biosorption of chromium(VI) and iron(III) ions from binary metal mixtures by R. arrhizus: Use of the competitive langmuir model. Process Biochemistry, 1996, 31, 573-585.	3.7	87
43	Biosorption of heavy metals by Zoogloea ramigera: use of adsorption isotherms and a comparison of biosorption characteristics. The Chemical Engineering Journal and the Biochemical Engineering Journal, 1995, 60, 181-188.	0.1	73
44	Copper(II) and nickel(II) adsorption by Rhizopus arrhizus in batch stirred reactors in series. The Chemical Engineering Journal and the Biochemical Engineering Journal, 1995, 58, 265-273.	0.1	10
45	A Comparative Study of the Biosorption of Lead(II) Ions to Z. ramigera and R. arrhizus. Process Biochemistry, 1995, 30, 169-174.	0.2	43
46	Comparison of Ca-alginate and Immobilized Z. ramigera as Sorbents for Copper(II) Removal. Process Biochemistry, 1995, 30, 175-181.	0.2	32
47	A comparative study of various biosorbents for removal of chromium(VI) ions from industrial waste waters. Process Biochemistry, 1994, 29, 1-5.	3.7	222
48	The biosorpnon of copperod by <i>C. vulgaris</i> and Z. <i>ramigera</i> . Environmental Technology (United Kingdom), 1992, 13, 579-586.	2.2	175
49	A comparative study of the adsorption of chromium(VI) ions to <i>C. vulgaris</i> and <i>Z. ramigera</i> . Environmental Technology (United Kingdom), 1990, 11, 33-40.	2.2	42
50	Application of adsorption isotherms to chromium adsorption onZ.ramigera. Biotechnology Letters, 1989, 11, 141-144.	2.2	25
51	The use ofZoogloea ramigera in waste water treatment containing Cr(VI) and Cd(II) ions. Biotechnology Letters, 1989, 11, 145-148.	2.2	24
52	The effects of the composition of growth medium and fermentation conditions on the production of lipase by R. delemar. Turkish Journal of Biology, 0, , .	0.8	9
53	Removal of Methyl Red, a cationic dye, Acid Blue 113, an anionic dye, from wastewaters using chitin and chitosan: influence of copper ions. , 0, 73, 289-300.		10
54	Removal of tetracycline by magnetic chitosan nanoparticles from medical wastewaters. , 0, 73, 380-388.		38