Marcel Nn Snels

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3844416/publications.pdf

Version: 2024-02-01

88 1,495 22 32 g-index

98 98 98 1339
all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Spectroscopic evidence for NAT, STS, and ice in MIPAS infrared limb emission measurements of polar stratospheric clouds. Atmospheric Chemistry and Physics, 2006, 6, 1201-1219.	4.9	82
2	The intermolecular vibrations of Ar–styrene and Ar–4â€fluorostyrene complexes. Journal of Chemical Physics, 1993, 99, 8398-8406.	3.0	58
3	Climatology of polar stratospheric clouds based on lidar observations from 1993 to 2001 over McMurdo Station, Antarctica. Journal of Geophysical Research, 2004, 109, .	3.3	56
4	High-resolution infrared spectrum and analysis of thev11, A2u(B2) fundamental band of12C6H6and13C12C5H6. Molecular Physics, 1990, 71, 759-768.	1.7	53
5	Measurements and modelling of high pressure pure CO2 spectra from 750 to 8500cmâ^1. lâ€"central and wing regions of the allowed vibrational bands. Journal of Quantitative Spectroscopy and Radiative Transfer, 2011, 112, 925-936.	2.3	51
6	IR dissociation of ammonia clusters. Chemical Physics, 1987, 115, 79-91.	1.9	49
7	Polar Stratospheric Clouds: Satellite Observations, Processes, and Role in Ozone Depletion. Reviews of Geophysics, 2021, 59, e2020RG000702.	23.0	49
8	The NH and ND stretching fundamentals of 14ND2H. Journal of Chemical Physics, 2003, 119, 7893-7902.	3.0	42
9	Van der waals modes and rotational fine structure in C2H4 dimers. Chemical Physics Letters, 1986, 124, 1-7.	2.6	41
10	Morphology of the tropopause layer and lower stratosphere above a tropical cyclone: a case study on cyclone Davina (1999). Atmospheric Chemistry and Physics, 2008, 8, 3411-3426.	4.9	38
11	Thev1andv3bands of ND3. Molecular Physics, 2000, 98, 837-854.	1.7	37
12	Induction effects on IR-predissociation spectra of (SF6)2, (SiF4)2 and (SiH4)2. Chemical Physics Letters, 1987, 140, 543-547.	2.6	36
13	Variability of aerosol vertical distribution in the Sahel. Atmospheric Chemistry and Physics, 2010, 10, 12005-12023.	4.9	35
14	The characteristics of the O2 Herzberg II and Chamberlain bands observed with VIRTIS/Venus Express. Icarus, 2013, 223, 609-614.	2.5	31
15	Mode selective tunneling dynamics observed by high resolution spectroscopy of the bending fundamentals of N14H2D and N14D2H. Journal of Chemical Physics, 2006, 125, 194319.	3.0	30
16	Development and airborne operation of a compact water isotope ratio infrared spectrometerâ€. Isotopes in Environmental and Health Studies, 2009, 45, 303-320.	1.0	28
17	Experimental CO2 absorption coefficients at high pressure and high temperature. Journal of Quantitative Spectroscopy and Radiative Transfer, 2013, 117, 21-28.	2.3	27
18	Rotational analysis of the $\hat{l}/21$ band of trichlorofluoromethane from high resolution Fourier transform and diode laser spectra of supersonic jets and isotopically enriched samples. Journal of Chemical Physics, 1995, 103, 8846-8853.	3.0	26

#	Article	IF	CITATIONS
19	IR dissociation of dimers of high symmetry molecules: SF6, SiF4 and SiH4. Chemical Physics, 1986, 109, 67-83.	1.9	25
20	Detection and identification of TNT, 2,4-DNT and 2,6-DNT by near-infrared cavity ringdown spectroscopy. Chemical Physics Letters, 2010, 489, 134-140.	2.6	25
21	High resolution Fourierâ€transform infrared spectroscopy of CHCl2F in supersonic jets: Analysis of ν3, ν7, and ν8. Journal of Chemical Physics, 1991, 95, 6355-6361.	3.0	24
22	Multiple-photon excitation spectra of SiH4 measured in the $10\hat{l}$ 4m range by a continuously tunable CO2 laser. Chemical Physics Letters, 1985, 122, 480-488.	2.6	23
23	Estimate of the Arctic Convective Boundary Layer Height from Lidar Observations: A Case Study. Advances in Meteorology, 2012, 2012, 1-9.	1.6	23
24	Spectroscopy of 4-fluorostyrene clusters. Journal of Molecular Structure, 1993, 293, 197-200.	3.6	22
25	Excited vibrational states of benzene: High resolution FTIR spectra and analysis of some out-of-plane vibrational fundamentals of C6H5D. Chemical Physics, 1997, 225, 107-130.	1.9	22
26	Diode Laser Jet Spectra and Analysis of the $\hat{l}\frac{1}{2}$ 3 and $\hat{l}\frac{1}{2}$ 8 Fundamentals of CHF2Cl. Journal of Molecular Spectroscopy, 2001, 209, 1-10.	1.2	22
27	The NH and ND stretching fundamentals of 14NH2D. Journal of Molecular Spectroscopy, 2006, 237, 143-148.	1.2	22
28	Infrared predissociation of SiF4 and CF3Br clusters in a molecular-beam experiment. Chemical Physics Letters, 1984, 106, 377-381.	2.6	21
29	Calibration method for depolarization lidar measurements. International Journal of Remote Sensing, 2009, 30, 5725-5736.	2.9	19
30	Determination of polar stratospheric cloud particle refractive indices by use of in situ optical measurements and T-matrix calculations. Applied Optics, 2005, 44, 3302.	2.1	17
31	Carbon dioxide opacity of the Venus׳ atmosphere. Planetary and Space Science, 2014, 103, 347-354.	1.7	17
32	High resolution analysis of the complex symmetric CF3 stretching chromophore absorption in CF3I. Journal of Chemical Physics, 2002, 116, 974-983.	3.0	15
33	Classification and scales of Antarctic polar stratospheric clouds using wavelet decomposition. Journal of Atmospheric and Solar-Terrestrial Physics, 2005, 67, 293-300.	1.6	15
34	Balloonborne lidar for cloud physics studies. Applied Optics, 2006, 45, 5701.	2.1	15
35	A comparison of light backscattering and particle size distribution measurements in tropical cirrus clouds. Atmospheric Measurement Techniques, 2011, 4, 557-570.	3.1	15
36	Evaluation of stratospheric ozone, temperature, and aerosol profiles from the LOANA lidar in Antarctica. Polar Science, 2012, 6, 209-225.	1.2	15

3

#	Article	IF	CITATIONS
37	High-resolution spectroscopy of CF2Cl2 in a molecular jet. Applied Physics B, Photophysics and Laser Chemistry, 1988, 45, 27-31.	1.5	14
38	Analysis of the ν3 + ν7 combination band of CF2Cl2 from spectra obtained by high resolution diode land FTIR supersonic jet techniquesElectronic supplementary information (ESI) available: line assignments for diode laser spectra for transitions ν3 and ν7 of CF235Cl2 (Table S1) and CF235Cl37Cl (Table S2). See http://www.rsc.org/suppdata/cp/b1/b110919g/. Physical Chemistry Chemical Physics, 2002, 4, 1531-1536.	aser 2.8	14
39	Radiosonde stratospheric temperatures at Dumont d'Urville (Antarctica): trends and link with polar stratospheric clouds. Atmospheric Chemistry and Physics, 2010, 10, 3813-3825.	4.9	14
40	Comparison of Antarctic polar stratospheric cloud observations by ground-based and space-borne lidar and relevance for chemistry–climate models. Atmospheric Chemistry and Physics, 2019, 19, 955-972.	4.9	14
41	Diode–Laser Jet Spectra and Analysis of the ν1 and ν4 Fundamentals of CCl3F. Journal of Molecular Spectroscopy, 2001, 205, 102-109. Carbon dioxide absorption at high densities in the <mml:math< td=""><td>1.2</td><td>13</td></mml:math<>	1.2	13
42	xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si0002.gif" overflow="scroll"> <mml:mn>1.18</mml:mn> <mml:mspace width="0.25em"></mml:mspace> <mml:mi mathvariant="normal">14</mml:mi> <mml:mi mathvariant="normal">mormal">mormal">mormal">mormal">mormal">mormal">mormal">mormal">mormal">mormal">mormal">mormal">normal">mormal">mormal">normal">mormal">mormal">normal">mormal">normal">mormal">no</mml:mi>	2.3	13
43	464-471. Shape and width of IR absorption lines of ammonia expanded in a supersonic jet. Applied Physics B, Photophysics and Laser Chemistry, 1988, 47, 277-282.	1.5	12
44	The AMMA MULID network for aerosol characterization in West Africa. International Journal of Remote Sensing, 2011, 32, 5485-5504.	2.9	12
45	High-resolution infrared spectrum and analysis of the $\hat{l}/22$ band of CF3Cl. Journal of Molecular Spectroscopy, 1988, 130, 337-343.	1.2	11
46	High-resolution Fourier-transform infrared spectroscopy of thev3(F2) fundamental of RuO4. Molecular Physics, 1991, 72, 145-158.	1.7	11
47	Molecular dynamics simulations for CO2 spectra. IV. Collisional line-mixing in infrared and Raman bands. Journal of Chemical Physics, 2013, 138, 244310.	3.0	11
48	Observation of polar stratospheric clouds over McMurdo (77.85°S, 166.67°E) (2006–2010). Journal of Geophysical Research D: Atmospheres, 2014, 119, 5528-5541.	3.3	11
49	Luminescence and ESCA analysis of laser-ablated materials. Applied Surface Science, 1990, 46, 321-325.	6.1	10
50	Pressure broadening in the second overtone of NO, measured with a near infrared DFB diode laser. Optics Communications, 1999, 159, 80-83.	2.1	10
51	High resolution FTIR spectra and analysis of the $\hat{l}/211$ fundamental and of the $\hat{l}/22+\hat{l}/211$, $\hat{l}/25+\hat{l}/212$ and $\hat{l}/27+\hat{l}/216$ combination bands of 12C6D6. Molecular Physics, 2002, 100, 981-1001.	1.7	10
52	Laser deposition of thin films of high Tc superconductors. Applied Surface Science, 1993, 69, 365-369.	6.1	9
53	Torsional splittings in the diode laser slit-jet spectra of the $\hat{l}\frac{1}{2}$ 6 fundamental of 1-chloro-1,1-difluoroethane (HCFC-142b). Journal of Molecular Spectroscopy, 2009, 254, 108-118.	1.2	9

High-resolution spectra and analysis of the hot bands of the v2vibration of CF3Cl (v2+ vn- vn,n= 3, 5,) Tj ETQq0 0 0,rgBT /Overlock 10 Tf

#	Article	IF	Citations
55	High-Resolution Spectra and Analysis of the ν8 Band of Methylene Chloride. Journal of Molecular Spectroscopy, 1995, 173, 113-119.	1.2	8
56	Orientational hole burning for dimers in the limit of large rotational quantum numbers. Chemical Physics, 1985, 94, 1-6.	1.9	7
57	High Resolution Spectroscopy of CF3Br by Diode Laser in the Frequency Range 1070–1090 cmâ^1. Laser Chemistry, 1988, 8, 61-78.	0.5	7
58	Terrestrial <scp>OH</scp> nightglow measurements during the <scp>Rosetta</scp> flyby. Geophysical Research Letters, 2015, 42, 5670-5677.	4.0	7
59	Quasi-coincident observations of polar stratospheric clouds by ground-based lidar and CALIOP at Concordia (Dome C, Antarctica) from 2014 to 2018. Atmospheric Chemistry and Physics, 2021, 21, 2165-2178.	4.9	7
60	High resolution infrared spectrum and analysis of the v2 band of CF3I. Molecular Physics, 1989, 68, 327-332.	1.7	6
61	Laser studies of polystyrene precursors performed through resonant two photon ionization processes in a supersonic molecular beam. Applied Surface Science, 1993, 69, 340-344.	6.1	6
62	Diode laser slit-jet spectra and analysis of the $\hat{l}\frac{1}{2}$ 14 fundamental of 1-chloro-1,1-difluoroethane (HCFC-142b). Journal of Molecular Spectroscopy, 2003, 217, 72-78.	1.2	6
63	High Resolution IR Study of the Coriolis Coupling between ν3and ν9in Methylene Chloride. Journal of Molecular Spectroscopy, 1995, 174, 581-586.	1.2	5
64	Laser ablation of BiSrCaCuO superconducting thin film: analysis of intermediate species in real time. Applied Surface Science, 1995, 86, 45-49.	6.1	5
65	High Resolution IR Study of the Coriolis Coupling between $\hat{l}/23$ and $\hat{l}/29$ in CH235Cl37Cl. Journal of Molecular Spectroscopy, 1997, 183, 224-227.	1.2	5
66	Diode laser slit-jet spectra and analysis of the fundamental of 1-chloro-1,1-difluoroethane (HCFC-142b). European Physical Journal D, 2002, 21, 137-142.	1.3	5
67	Diode laser jet spectra and analysis of the $\hat{l}^{1/2}$ 14 fundamental of 1,1,1,2-tetrafluoroethane (HFC-134a). Journal of Molecular Spectroscopy, 2003, 221, 156-162.	1.2	5
68	Comment on "High-Resolution FTIR Spectrum and Rotational Structure of the ν8Band of Methylene Chloride―[J. Mol. Spectrosc.175,363–369 (1996)]. Journal of Molecular Spectroscopy, 1996, 177, 320.	1.2	4
69	Fermi interaction between the $1\frac{1}{2}$ and the $1\frac{1}{2}$ 2+ $41\frac{1}{2}$ s bands of Arâc DN2+. Journal of Chemical Physics, 2006, 12 224315.	24 3.0	4
70	Near-infrared Rayleigh scattering of SF6. Molecular Physics, 2013, 111, 2314-2319.	1.7	4
71	Temperature dependence of collisional induced absorption (CIA) bands of CO2 with implications for Venus' atmosphere. Journal of Quantitative Spectroscopy and Radiative Transfer, 2018, 204, 242-249.	2.3	4

Lidar observations of cirrus clouds in Palau (7°33â \in 2â \in %N, 134°48â \in 2â \in %E). Atmospheric Chemistry and Physics, 2021, 7947-7961.

#	Article	IF	CITATIONS
73	High-resolution infrared spectrum and analysis of the $\hat{l}/22$ band of CF3Br. Journal of Molecular Spectroscopy, 1989, 138, 413-422.	1.2	3
74	High resolution infrared spectrum and analysis of the 2v 3, 3v 3-v 3 and v 1-v 3 bands of CF3 Br. Molecular Physics, 1989, 68, 333-340.	1.7	3
75	High Resolution Spectra and Rotational Analysis of the $2\hat{l}\frac{1}{2}8$, $\hat{l}\frac{1}{2}2+\hat{l}\frac{1}{2}8$, and $2\hat{l}\frac{1}{2}2$ Bands in Methylene Chloride. Journal of Molecular Spectroscopy, 1997, 182, 124-131.	1.2	3
76	<title>First results obtained with a lidar fluorescence sensor system</title> ., 2000, , .		3
77	Lagrangian analysis of microphysical and chemical processes in the Antarctic stratosphere: a case study. Atmospheric Chemistry and Physics, 2015, 15, 6651-6665.	4.9	3
78	Comparison of Coincident Optical Particle Counter and Lidar Measurements of Polar Stratospheric Clouds Above McMurdo (77.85°S, 166.67°E) From 1994 to 1999. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD033572.	3.3	3
79	High-resolution infrared spectrum and analysis of the $2\hat{l}/23$ band of CF3Cl. Journal of Molecular Spectroscopy, 1989, 135, 131-143.	1.2	2
80	Production and reactivity of ionic clusters. Applied Surface Science, 1992, 54, 171-174.	6.1	2
81	High resolution FTIR spectra and analysis of the $\hat{l}/211$ fundamental band of. Chemical Physics Letters, 2001, 350, 57-62.	2.6	2
82	A simulation chamber for absorption spectroscopy in planetary atmospheres. Atmospheric Measurement Techniques, 2021, 14, 7187-7197.	3.1	2
83	Resonant twophoton ionization processes of van der Waals adducts: Spectroscopy and reactivity of styrenes clustered with various molecules. Journal of Chemical Sciences, 1993, 105, 773-782.	1.5	1
84	High-Resolution FTIR Spectra of CD235Cl2: Analysis of the $\hat{l}/23/\hat{l}/27/\hat{l}/29$ Triad. Journal of Molecular Spectroscopy, 2002, 216, 191-196.	1.2	1
85	High resolution FTIR spectra and analysis of the $1\frac{1}{2}$ 4 + $1\frac{1}{2}$ 8 combination band and of the $21\frac{1}{2}$ 4 + $1\frac{1}{2}$ 8 $1\frac{1}{2}$ 4 hot of CH2 35Cl2. Molecular Physics, 2003, 101, 799-803.	band 1.7	1
86	Analysis of FTIR spectra of CH279Br35Cl; the $\hat{1}\frac{1}{2}$ 4 and $\hat{1}\frac{1}{2}$ 5 fundamentals and their hot-bands $\hat{1}\frac{1}{2}$ 4+ $\hat{1}\frac{1}{2}$ 6â $\hat{1}\frac{1}{2}$ 6 an $\hat{1}\frac{1}{2}$ 5+ $\hat{1}\frac{1}{2}$ 6â $\hat{1}\frac{1}{2}$ 6. Journal of Molecular Spectroscopy, 2004, 224, 13-17.	d _{1.2}	1
87	<title>Study of atmospheric trace gases by sub-Doppler diode laser spectroscopy</title> ., 2000, 4070, 94.		0
88	Analysis of FTIR spectra of CH279Br35Cl; the $\hat{l}\frac{1}{2}$ 3and $\hat{l}\frac{1}{2}$ 9fundamentals. Molecular Physics, 2004, 102, 1469-1473.	1.7	0