Rakesh Kumar Tekade

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/3843837/rakesh-kumar-tekade-publications-by-year.pdf

Version: 2024-04-17

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

236 papers

6,373 citations

49 h-index

76 g-index

240 ext. papers

7,543 ext. citations

6.2 avg, IF

6.52 L-index

#	Paper	IF	Citations
236	Toxicogenomics in drug safety assessment 2022 , 73-98		
235	Fooddrug interactions and their implications on oral drug bioavailability 2022 , 263-289		
234	Factors influencing drug toxicity 2022 , 27-50		
233	Molecular biology of apoptotic, necrotic, and necroptotic cell death 2022 , 51-72		
232	Toxicokinetic and toxicodynamic considerations in drug research 2022 , 751-776		
231	Toxicological assessment of risk of medical devices 2022 , 651-684		
230	Importance of toxicity testing in drug discovery and research 2022 , 117-144		2
229	Developmental toxicity of nanomaterials used in drug delivery: understanding molecular biomechanics and potential remedial measures 2022 , 685-725		0
228	Environmental and safety aspects of bionanotechnology 2022 , 605-650		
227	Excipient toxicity and safety 2022 , 487-511		
226	Impact of ageing on the pharmacokinetics and pharmacodynamics of the drugs 2022 , 241-261		
225	Toxicity of pharmaceutical azo dyes 2022 , 569-603		1
224	Methods and models for in vitro toxicity 2022 , 145-174		
223	Toxicity and toxicokinetic considerations in product development and drug research 2022, 401-424		
222	In silico methods for the prediction of drug toxicity 2022 , 357-383		O
221	Principles and concepts in toxicokinetic 2022 , 1-26		
220	Drugdrug interactions and their implications on the pharmacokinetics of the drugs 2022 , 291-322		

(2021-2022)

219	Nanomaterials assisted chemo-photothermal therapy for combating cancer drug resistance. Journal of Drug Delivery Science and Technology, 2022, 103164	4.5	1
218	Implication of metabolomics and transporter modulation based strategies to minimize multidrug resistance and enhance site-specific bioavailability: a needful consideration toward modern anticancer drug discovery <i>Drug Metabolism Reviews</i> , 2022 , 1-19	7	O
217	Current trends in theranostic nanomedicines. <i>Journal of Drug Delivery Science and Technology</i> , 2022 , 71, 103280	4.5	7
216	Engineering immunity via skin-directed drug delivery devices <i>Journal of Controlled Release</i> , 2022 , 345, 385-404	11.7	8
215	Dendrimers: Properties and Applications in Biomedical Field 2022 , 215-243		1
214	Current Scenario and Future Prospect in the Management of COVID-19. <i>Current Medicinal Chemistry</i> , 2021 , 28, 284-307	4.3	13
213	Recent advancements and future submissions of silica core-shell nanoparticles. <i>International Journal of Pharmaceutics</i> , 2021 , 609, 121173	6.5	8
212	Reinforced electrospun nanofiber composites for drug delivery applications. <i>Journal of Biomedical Materials Research - Part A</i> , 2021 , 109, 2036-2064	5.4	5
211	Nanomedicine in the treatment of diabetic nephropathy. Future Medicinal Chemistry, 2021, 13, 663-686	4.1	3
2 10	Integrated nanomaterials for non-invasive photothermal therapy of rheumatoid arthritis. <i>Drug Discovery Today</i> , 2021 , 26, 2315-2328	8.8	7
209	Advancements in practical and scientific bioanalytical approaches to metabolism studies in drug development. <i>Bioanalysis</i> , 2021 , 13, 913-930	2.1	3
208	Nanoplatform-Integrated Miniaturized Solid-Phase Extraction Techniques: A Critical Review. <i>Critical Reviews in Analytical Chemistry</i> , 2021 , 1-23	5.2	
207	Discovery of boronic acid-based potent activators of tumor pyruvate kinase M2 and development of gastroretentive nanoformulation for oral dosing. <i>Bioorganic and Medicinal Chemistry Letters</i> , 2021 , 42, 128062	2.9	2
206	Multifunctional polymeric micellar nanomedicine in the diagnosis and treatment of cancer. <i>Materials Science and Engineering C</i> , 2021 , 126, 112186	8.3	10
205	Cyclo-RGD Truncated Polymeric Nanoconstruct with Dendrimeric Templates for Targeted HDAC4 Gene Silencing in a Diabetic Nephropathy Mouse Model. <i>Molecular Pharmaceutics</i> , 2021 , 18, 641-666	5.6	7
204	Artificial intelligence in drug discovery and development. <i>Drug Discovery Today</i> , 2021 , 26, 80-93	8.8	107
203	To investigate fit-to-purpose nanocarrier for non-invasive drug delivery to posterior segment of eye. <i>Journal of Drug Delivery Science and Technology</i> , 2021 , 61, 102222	4.5	2
202	Glucosamine-conjugated nanoseeds for chemo-magneto hyperthermia therapy of cancer. <i>Journal of Drug Delivery Science and Technology</i> , 2021 , 61, 102295	4.5	4

201	Pharmacokinetics and biopharmaceutics: 🖥 leader or attendant 2021 , 17-27		
200	Pharmacokinetics modeling in drug delivery 2021 , 279-334		
199	Chronopharmacokinetics 2021 , 163-194		
198	Software used in ADME computation 2021 , 699-708		
197	Overview of biopharmaceutics and pharmacokinetics 2021 , 1-16		
196	Biopharmaceutical considerations in the pediatric and geriatric formulation development 2021 , 109-14	14	
195	Nanomedicines accessible in the market for clinical interventions. <i>Journal of Controlled Release</i> , 2021 , 330, 372-397	11.7	56
194	Innovation in bioanalytical strategies and drug-drug interaction study approaches in drug discovery. <i>Bioanalysis</i> , 2021 , 13, 513-532	2.1	3
193	Engineered nanoplex mediated targeted miRNA delivery to rescue dying podocytes in diabetic nephropathy. <i>International Journal of Pharmaceutics</i> , 2021 , 605, 120842	6.5	5
192	Emerging roles and biopharmaceutical applications of milk derived exosomes. <i>Journal of Drug Delivery Science and Technology</i> , 2021 , 64, 102577	4.5	O
191	Biosimilars accessible in the market for the treatment of cancer. <i>Journal of Controlled Release</i> , 2021 , 336, 112-129	11.7	20
190	Pharmacokinetics aspects of biotechnological products 2021 , 539-565		О
189	Current strategies in targeted anticancer drug delivery systems to brain 2021 , 267-280		
188	Influence of fever on pharmacokinetics of drugs 2021 , 451-463		
187	Laser activatable nanographene colloids for chemo-photothermal combined gene therapy of triple-negative breast cancer <i>Materials Science and Engineering C</i> , 2021 , 112605	8.3	0
186	Advancements in sterile products and admixtures 2020 , 671-694		
185	Endosomal escape tendency of drug delivery systems to mediate cytosolic delivery of therapeutics 2020 , 227-258		1
184	NanoGold-core dendrimeric seeds for combined chemo-, photothermal-, and photodynamic therapy of cancer. <i>Journal of Drug Delivery Science and Technology</i> , 2020 , 58, 101814	4.5	8

(2020-2020)

183	Green graphene nanoplates for combined photo-chemo-thermal therapy of triple-negative breast cancer. <i>Nanomedicine</i> , 2020 , 15, 581-601	14
182	Understanding molecular upsets in diabetic nephropathy to identify novel targets and treatment opportunities. <i>Drug Discovery Today</i> , 2020 , 25, 862-878	17
181	Recent advances in regenerative medicine 2020 , 367-412	
180	Achieving sterility in biomedical and pharmaceutical products (part-II): radiation sterilization 2020 , 789-848	
179	Mass spectrometry imaging in lipid and proteomic profiling: an emerging tool for cancer diagnosis 2020 , 259-295	O
178	Gene delivery to tackle diabetic nephropathy 2020 , 515-537	
177	Small interfering RNA-based advanced nanoparticles for the treatment of cancer 2020 , 341-365	
176	Resealed erythrocytes (RBCs) and their biomedical application 2020 , 539-580	
175	Recombinant blood products and therapeutic enzymes: An update 2020 , 447-482	O
174	Pharmacogenomics and pharmacoepigenomics: Impact on therapeutic strategies 2020 , 413-446	
173	Photothermal therapy as emerging combinatorial therapeutic approach 2020 , 297-339	3
172	New advances in insulin products 2020 , 483-514	1
171	Proliposomes: a potential colloidal carrier for drug delivery applications 2020 , 581-608	3
170	Gold nanoparticles: An advanced drug delivery and diagnostic tool 2020 , 609-669	3
169	Current advances in the clinical development of anti-tubercular agents. <i>Tuberculosis</i> , 2020 , 125, 101989 2.6	9
168	Coating technologies in pharmaceutical product development 2020 , 665-719	10
167	Polymeric micelles: a ray of hope among new drug delivery systems 2020 , 235-289	8
166	Fundamentals of diffusion and dissolution: dissolution testing of pharmaceuticals 2020, 1-45	2

165	Dendrimers as novel drug-delivery system and its applications 2020 , 333-392		10
164	Evolving nanoformulation strategies for diagnosis and clinical interventions for Parkinson's disease. Drug Discovery Today, 2020 , 25, 392-405	8.8	6
163	miR-29b attenuates histone deacetylase-4 mediated podocyte dysfunction and renal fibrosis in diabetic nephropathy. <i>Journal of Diabetes and Metabolic Disorders</i> , 2020 , 19, 13-27	2.5	12
162	Cancer-targeted chemotherapy: Emerging role of the folate anchored dendrimer as drug delivery nanocarrier 2020 , 151-198		9
161	Development of Metronidazole Loaded Chitosan Nanoparticles Using QbD Approach-A Novel and Potential Antibacterial Formulation. <i>Pharmaceutics</i> , 2020 , 12,	6.4	30
160	Exosomes in multidrug-resistant cancer. Current Opinion in Pharmacology, 2020 , 54, 109-120	5.1	3
159	Recent advancements in solubilization of hydrophobic drugs 2020 , 109-144		
158	Quality by design as an emerging concept in the development of pharmaceuticals 2020 , 1-25		
157	Hydrotropy, mixed hydrotropy, and mixed solvency as trending concept for solubilization of lipophilic drugs 2020 , 145-178		2
156	Prodrug design for improving the biopharmaceutical properties of therapeutic drugs 2020 , 179-226		О
155	Emerging role of nanomedicine in the treatment of neuropathic pain. <i>Journal of Drug Targeting</i> , 2020 , 28, 11-22	5.4	6
154	Advanced nanoscale carrier-based approaches to overcome biopharmaceutical issues associated with anticancer drug 'Etoposide'. <i>Materials Science and Engineering C</i> , 2020 , 106, 110275	8.3	25
153	Tumor microenvironment targeted nanotherapeutics for cancer therapy and diagnosis: A review. <i>Acta Biomaterialia</i> , 2020 , 101, 43-68	10.8	133
152	Graphene-based hybrid nanoparticle of doxorubicin for cancer chemotherapy. <i>International Journal of Nanomedicine</i> , 2019 , 14, 7419-7429	7.3	20
151	Dendrimer grafted albumin nanoparticles for the treatment of post cerebral stroke damages: A proof of concept study. <i>Colloids and Surfaces B: Biointerfaces</i> , 2019 , 184, 110488	6	5
150	Employment of enhanced permeability and retention effect (EPR): Nanoparticle-based precision tools for targeting of therapeutic and diagnostic agent in cancer. <i>Materials Science and Engineering C</i> , 2019 , 98, 1252-1276	8.3	279
149	Scientific Rationale for Designing Controlled Drug Delivery Systems 2019 , 1-28		3
148	Current Developments in Excipient Science 2019 , 29-83		16

147	Fundamentals of Polymers Science Applied in Pharmaceutical Product Development 2019, 85-112	2
146	Copolymers and Block Copolymers in Drug Delivery and Therapy 2019 , 173-201	6
145	Ligands for Targeted Drug Delivery and Applications 2019 , 307-342	1
144	Transportation and Biointeraction Properties in Nanomaterials Across Biological Systems 2019 , 343-368	4
143	Importance of Physicochemical Characterization of Nanoparticles in Pharmaceutical Product Development 2019 , 369-400	33
142	Bionanotechnology in Pharmaceutical Research 2019 , 449-471	2
141	Design and Evaluation of Ophthalmic Delivery Formulations 2019 , 473-538	7
140	Design and Fabrication of Brain-Targeted Drug Delivery 2019 , 539-593	4
139	Cutaneous and Transdermal Drug Delivery 2019 , 595-650	2
138	Protein/Peptide Drug Delivery Systems: Practical Considerations in Pharmaceutical Product Development 2019 , 651-684	7
137	Clinical Aspects and Regulatory Requirements for Nanomedicines 2019, 733-752	9
136	Surface Modification of Biomedically Essential Nanoparticles Employing Polymer Coating. <i>Methods in Molecular Biology</i> , 2019 , 2000, 191-201	8
135	Exosomal miRNA in chemoresistance, immune evasion, metastasis and progression of cancer. <i>Drug Discovery Today</i> , 2019 , 24, 2058-2067	58
134	Engineered Mesenchymal Stem Cells as Nanocarriers for Cancer Therapy and Diagnosis 2019 , 19-56	
133	Guiding Factors and Surface Modification Strategies for Biomaterials in Pharmaceutical Product Development 2019 , 57-87	1
132	Biomaterials for Sustained and Controlled Delivery of Small Drug Molecules 2019 , 89-152	3
131	Approaches to the Development of Implantable Therapeutic Systems 2019 , 191-224	
130	Nanotechnology in Tissue Engineering 2019 , 225-261	

Novel Therapeutic Approaches for the Treatment of Leishmaniasis **2019**, 263-300

128	Biomaterials and Nanoparticles for Hyperthermia Therapy 2019 , 375-413		1
127	Hyaluronic Acid as an Emerging Technology Platform for Silencing RNA Delivery 2019 , 415-458		1
126	Functionalized Carbon Nanotubes for Protein, Peptide, and Gene Delivery 2019 , 613-637		7
125	Fabrication of Mucoadhesive-Dendrimers as Solid Dosage Forms. <i>Methods in Molecular Biology</i> , 2019 , 2000, 93-109	1.4	6
124	Molecular modeling approaches for the discovery of adenosine A receptor antagonists: current status and future perspectives. <i>Drug Discovery Today</i> , 2019 , 24, 1854-1864	8.8	21
123	Nanogold-core multifunctional dendrimer for pulsatile chemo-, photothermal- and photodynamic-therapy of rheumatoid arthritis. <i>Journal of Colloid and Interface Science</i> , 2019 , 544, 61-77	9.3	49
122	Specialized tablets: ancient history to modern developments 2019 , 615-664		2
121	Method and its Composition for encapsulation, stabilization, and delivery of siRNA in Anionic polymeric nanoplex: An In vitro- In vivo Assessment. <i>Scientific Reports</i> , 2019 , 9, 16047	4.9	21
120	Regulatory assessment for controlled drug delivery products 2019 , 721-741		1
119	'Dendrimer-Cationized-Albumin' encrusted polymeric nanoparticle improves BBB penetration and anticancer activity of doxorubicin. <i>International Journal of Pharmaceutics</i> , 2019 , 555, 77-99	6.5	60
118	Use of Polymers in Controlled Release of Active Agents 2019 , 113-172		11
117	Growing synergy of nanodiamonds in neurodegenerative interventions. <i>Drug Discovery Today</i> , 2019 , 24, 584-594	8.8	11
116	Current regulatory requirements and practical approaches for stability analysis of pharmaceutical products: A comprehensive review. <i>International Journal of Pharmaceutics</i> , 2018 , 543, 328-344	6.5	24
115	Carbon nanotubes (CNTs) based advanced dermal therapeutics: current trends and future potential. <i>Nanoscale</i> , 2018 , 10, 8911-8937	7.7	54
114	Targeting luteinizing hormone-releasing hormone: A potential therapeutics to treat gynecological and other cancers. <i>Journal of Controlled Release</i> , 2018 , 269, 277-301	11.7	31
113	Molecular dynamics simulation strategies for designing carbon-nanotube-based targeted drug delivery. <i>Drug Discovery Today</i> , 2018 , 23, 235-250	8.8	58
112	Applications of Computers in Pharmaceutical Product Formulation 2018, 665-703		9

Basic Concept and Application of Sampling Procedures **2018**, 303-338

110	Documentation Protocol in Product Development Including Clinical Records 2018 , 403-440	
109	Sterilization of Pharmaceuticals 2018 , 467-519	2
108	Ethics and Legal Protection of Uses of Computer Applications in Pharmaceutical Research 2018 , 757-770	O
107	Correlation Between In Vitro and In Vivo Screens: Special Emphasis on High Throughput Screening and High Throughput Pharmacokinetic Analysis 2018 , 441-466	
106	Package Types for Different Dosage Forms 2018 , 553-590	1
105	Levels of Solid State Properties: Role of Different Levels During Pharmaceutical Product Development 2018 , 1-30	
104	Concepts of Hypothesis Testing and Types of Errors 2018 , 257-280	1
103	Experimental Design and Analysis of Variance 2018 , 281-301	2
102	Guiding Principles for Human and Animal Research During Pharmaceutical Product Development 2018 , 621-664	1
101	Particulate Level Properties and its Implications on Product Performance and Processing 2018 , 155-220	0
100	Drug E xcipient Interaction and Incompatibilities 2018 , 363-402	10
99	Computer-Aided Prediction of Pharmacokinetic (ADMET) Properties 2018, 731-755	22
98	Protein and Tissue Binding: Implication on Pharmacokinetic Parameters 2018 , 371-399	O
97	Four Stages of Pharmaceutical Product Development 2018 , 637-668	2
96	Polymorphism and its Implications in Pharmaceutical Product Development 2018 , 31-65	3
95	Basics of Crystallization Process Applied in Drug Exploration 2018 , 67-103	1
94	Role of Amorphous State in Drug Delivery 2018 , 105-154	1

93 Statistical Techniques in Pharmaceutical Product Development **2018**, 339-362

92	Package Development of Pharmaceutical Products 2018 , 521-552	O
91	Food and Drug Laws Affecting Pharmaceutical Product Design, Development, and Commercial Manufacturing 2018 , 591-619	
90	Patents and Other Intellectual Property Rights in Drug Delivery 2018 , 705-730	1
89	Preformulation in Drug Research and Pharmaceutical Product Development 2018 , 1-55	3
88	Physicochemical Aspects to Be Considered in Pharmaceutical Product Development 2018 , 57-83	1
87	Role of Physicochemical Parameters on Drug Absorption and Their Implications in Pharmaceutical Product Development 2018 , 85-116	2
86	Physiologic Factors Related to Drug Absorption 2018 , 117-147	1
85	Physicochemical, Pharmaceutical, and Biological Considerations in GIT Absorption of Drugs 2018 , 149-178	4
84	Influence of Drug Properties and Routes of Drug Administration on the Design of Controlled Release System 2018 , 179-223	3
83	Stability and Degradation Studies for Drug and Drug Product 2018 , 225-257	
82	First-Pass Metabolism Considerations in Pharmaceutical Product Development 2018 , 259-286	
81	Dissolution Profile Consideration in Pharmaceutical Product Development 2018 , 287-336	1
80	Drug Disposition Considerations in Pharmaceutical Product 2018 , 337-369	2
79	Preformulation Studies of Drug Substances, Protein, and Peptides: Role in Drug Discovery and Pharmaceutical Product Development 2018 , 401-433	4
78	Role of Salt Selection in Drug Discovery and Development 2018 , 435-472	4
77	Solubility and Solubilization Approaches in Pharmaceutical Product Development 2018, 513-547	2
76	Rheology and Its Implications on Performance of Liquid Dosage Forms 2018 , 549-597	1

75	Micromeritics in Pharmaceutical Product Development 2018 , 599-635		3
74	Scale-Up Studies in Pharmaceutical Products Development 2018 , 669-700		2
73	Manipulation of Physiological Processes for Pharmaceutical Product Development 2018 , 701-729		4
72	Impact of Pharmaceutical Product Quality on Clinical Efficacy 2018, 731-771		
71	Formulation Additives Used in Pharmaceutical Products 2018 , 773-831		3
70	Functionalized carbon nanotubes as emerging delivery system for the treatment of cancer. International Journal of Pharmaceutics, 2018, 548, 540-558	6.5	95
69	Carbon nanotubes in the delivery of anticancer herbal drugs. <i>Nanomedicine</i> , 2018 , 13, 1187-1220	5.6	24
68	Budding Alliance of Nanotechnology in RNA Interference Therapeutics. <i>Current Pharmaceutical Design</i> , 2018 , 24, 2632-2643	3.3	3
67	Nanostructured Hyaluronic Acid-based Materials for the Delivery of siRNA. <i>Current Pharmaceutical Design</i> , 2018 , 24, 2678-2691	3.3	8
66	Carbon nanotube scaffolds as emerging nanoplatform for myocardial tissue regeneration: A review of recent developments and therapeutic implications. <i>Biomedicine and Pharmacotherapy</i> , 2018 , 104, 496	^{.7} 5∙08	86
65	Beyond the Blood B rain Barrier: Facing New Challenges and Prospects of Nanotechnology-Mediated Targeted Delivery to the Brain 2018 , 397-437		4
64	The use of nanoscaffolds and dendrimers in tissue engineering. <i>Drug Discovery Today</i> , 2017 , 22, 652-664	8.8	90
63	Whether a novel drug delivery system can overcome the problem of biofilms in respiratory diseases?. <i>Drug Delivery and Translational Research</i> , 2017 , 7, 179-187	6.2	28
62	Recent advances in hyaluronic acid-decorated nanocarriers for targeted cancer therapy. <i>Drug Discovery Today</i> , 2017 , 22, 665-680	8.8	123
61	Nanomedicine for cancer diagnosis and therapy: advancement, success and structure-activity relationship. <i>Therapeutic Delivery</i> , 2017 , 8, 1003-1018	3.8	42
60	Recent advances in exosome-based nanovehicles as RNA interference therapeutic carriers. Nanomedicine, 2017, 12, 2653-2675	5.6	47
59	The Warburg effect and glucose-derived cancer theranostics. <i>Drug Discovery Today</i> , 2017 , 22, 1637-1653	88.8	83
58	Novel nanosystems for the treatment of ocular inflammation: Current paradigms and future research directions. <i>Journal of Controlled Release</i> , 2017 , 268, 19-39	11.7	84

57	Recent advances in TPGS-based nanoparticles of docetaxel for improved chemotherapy. <i>International Journal of Pharmaceutics</i> , 2017 , 529, 506-522	6.5	79
56	Safety against nephrotoxicity in paclitaxel treatment: Oral nanocarrier as an effective tool in preclinical evaluation with marked in vivo antitumor activity. <i>Regulatory Toxicology and Pharmacology</i> , 2017 , 91, 179-189	3.4	39
55	Carbon Nanotubes in Targeting and Delivery of Drugs 2017 , 389-426		5
54	Stroke Management: An Emerging Role of Nanotechnology. <i>Micromachines</i> , 2017 , 8,	3.3	28
53	Nanotechnology for the Development of Nanomedicine 2017 , 3-61		25
52	Solid Lipid Nanoparticles for Targeting and Delivery of Drugs and Genes 2017 , 256-286		14
51	Biopolymer-based nanocomposites for transdermal drug delivery 2017 , 81-106		8
50	Pharmacokinetic and Pharmacodynamic Features of Nanoemulsion Following Oral, Intravenous, Topical and Nasal Route. <i>Current Pharmaceutical Design</i> , 2017 , 23, 2504-2531	3.3	86
49	Surface Engineered Dendrimers in siRNA Delivery and Gene Silencing. <i>Current Pharmaceutical Design</i> , 2017 , 23, 2952-2975	3.3	28
48	Recent Advances in Oncological Submissions of Dendrimer. <i>Current Pharmaceutical Design</i> , 2017 , 23, 3084-3098	3.3	49
47	Application of Chitosan and its Derivatives in Nanocarrier Based Pulmonary Drug Delivery Systems. <i>Pharmaceutical Nanotechnology</i> , 2017 , 5, 243-249	4	24
46	Microsponge Embedded Tablets for Sustained Delivery of Nifedipine. <i>Pharmaceutical Nanotechnology</i> , 2017 , 5, 192-202	4	19
45	Cationic bovine serum albumin (CBA) conjugated poly lactic-co-glycolic acid (PLGA) nanoparticles for extended delivery of methotrexate into brain tumors. <i>RSC Advances</i> , 2016 , 6, 89040-89050	3.7	35
44	Augmented delivery of gemcitabine in lung cancer cells exploring mannose anchored solid lipid nanoparticles. <i>Journal of Colloid and Interface Science</i> , 2016 , 481, 107-16	9.3	112
43	Comparative biodistribution and safety profiling of olmesartan medoxomil oil-in-water oral nanoemulsion. <i>Regulatory Toxicology and Pharmacology</i> , 2016 , 82, 20-31	3.4	61
42	Lyophilized mucoadhesive-dendrimer enclosed matrix tablet for extended oral delivery of albendazole. <i>European Journal of Pharmaceutics and Biopharmaceutics</i> , 2016 , 102, 202-13	5.7	56
41	Luteinizing hormone-releasing hormone peptide tethered nanoparticulate system for enhanced antitumoral efficacy of paclitaxel. <i>Nanomedicine</i> , 2016 , 11, 797-816	5.6	27
40	Mucoadhesion: A promising approach in drug delivery system. <i>Reactive and Functional Polymers</i> , 2016 , 100, 151-172	4.6	162

(2014-2016)

39	Dendrimer-mediated approaches for the treatment of brain tumor. <i>Journal of Biomaterials Science, Polymer Edition</i> , 2016 , 27, 557-80	3.5	61	
38	Force degradation behavior of glucocorticoid deflazacort by UPLC: isolation, identification and characterization of degradant by FTIR, NMR and mass analysis. <i>Journal of Biomedical Research</i> , 2016 , 30, 149-161	1.5	3	
37	RNAi-combined nano-chemotherapeutics to tackle resistant tumors. <i>Drug Discovery Today</i> , 2016 , 21, 1761-1774	8.8	59	
36	Theranostic Nanoseeds for Efficacious Internal Radiation Therapy of Unresectable Solid Tumors. <i>Scientific Reports</i> , 2016 , 6, 20614	4.9	51	
35	Impact of pegylation on biopharmaceutical properties of dendrimers. <i>Polymer</i> , 2015 , 59, 67-92	3.9	69	
34	Hollow Gold Nanoparticals as Biocompatible Radiosensitizer: An In Vitro Proof of Concept Study. <i>Journal of Nano Research</i> , 2015 , 32, 106-112	1	24	
33	Glycyrrhizin Conjugated Dendrimer and Multi-Walled Carbon Nanotubes for Liver Specific Delivery of Doxorubicin. <i>Journal of Nanoscience and Nanotechnology</i> , 2015 , 15, 1088-100	1.3	48	
32	One platform comparison of solubilization potential of dendrimer with some solubilizing agents. Drug Development and Industrial Pharmacy, 2015 , 41, 722-7	3.6	35	
31	Generation dependent safety and efficacy of folic acid conjugated dendrimer based anticancer drug formulations. <i>Pharmaceutical Research</i> , 2015 , 32, 1438-50	4.5	87	
30	Dendrimer-stabilized smart-nanoparticle (DSSN) platform for targeted delivery of hydrophobic antitumor therapeutics. <i>Pharmaceutical Research</i> , 2015 , 32, 910-28	4.5	56	
29	Abstract 3680: Albumin-chitosan hybrid onconase nanocarriers for mesothelioma therapy 2015 ,		8	
28	Nanocarriers Assisted siRNA Gene Therapy for the Management of Cardiovascular Disorders. <i>Current Pharmaceutical Design</i> , 2015 , 21, 4427-40	3.3	85	
27	siRNA Therapy, Challenges and Underlying Perspectives of Dendrimer as Delivery Vector. <i>Current Pharmaceutical Design</i> , 2015 , 21, 4614-36	3.3	53	
26	Nanomaterial Based Approaches for the Diagnosis and Therapy of Cardiovascular Diseases. <i>Current Pharmaceutical Design</i> , 2015 , 21, 4465-78	3.3	77	
25	Dendrimer, liposomes, carbon nanotubes and PLGA nanoparticles: one platform assessment of drug delivery potential. <i>AAPS PharmSciTech</i> , 2014 , 15, 388-99	3.9	98	
24	Designing hybrid onconase nanocarriers for mesothelioma therapy: a Taguchi orthogonal array and multivariate component driven analysis. <i>Molecular Pharmaceutics</i> , 2014 , 11, 3671-83	5.6	37	
23	Nanocarrier mediated delivery of siRNA/miRNA in combination with chemotherapeutic agents for cancer therapy: current progress and advances. <i>Journal of Controlled Release</i> , 2014 , 194, 238-56	11.7	257	
22	Formulation development and in vitro-in vivo assessment of the fourth-generation PPI dendrimer as a cancer-targeting vector. <i>Nanomedicine</i> , 2014 , 9, 2291-308	5.6	59	

21	Generation dependent cancer targeting potential of poly(propyleneimine) dendrimer. <i>Biomaterials</i> , 2014 , 35, 5539-48	15.6	105
20	Dendrimers for Enhanced Drug Solubilization 2013 , 373-409		9
19	The effect of polyethylene glycol spacer chain length on the tumor-targeting potential of folate-modified PPI dendrimers. <i>Journal of Nanoparticle Research</i> , 2013 , 15, 1	2.3	60
18	Nanoparticulate Carrier Mediated Intranasal Delivery of Insulin for the Restoration of Memory Signaling in Alzheimer's Disease. <i>Current Nanoscience</i> , 2013 , 9, 46-55	1.4	24
17	STAT6 siRNA matrix-loaded gelatin nanocarriers: formulation, characterization, and ex vivo proof of concept using adenocarcinoma cells. <i>BioMed Research International</i> , 2013 , 2013, 858946	3	52
16	Formulation development and evaluation of hybrid nanocarrier for cancer therapy: Taguchi orthogonal array based design. <i>BioMed Research International</i> , 2013 , 2013, 712678	3	45
15	Extraction and RP-HPLC determination of taxol in rat plasma, cell culture and quality control samples. <i>Journal of Biomedical Research</i> , 2013 , 27, 394-405	1.5	15
14	Cancer targeting potential of folate targeted nanocarrier under comparative influence of tretinoin and dexamethasone. <i>Current Drug Delivery</i> , 2013 , 10, 477-91	3.2	40
13	Nanoparticulate Carrier Mediated Intranasal Delivery of Insulin for the Restoration of Memory Signaling in Alzheimer Disease. <i>Current Nanoscience</i> , 2013 , 9, 46-55	1.4	25
12	Ethosomes and ultradeformable liposomes for transdermal delivery of clotrimazole: A comparative assessment. <i>Saudi Pharmaceutical Journal</i> , 2012 , 20, 161-70	4.4	172
11	Evaluation of dendrimer safety and efficacy through cell line studies. <i>Current Drug Targets</i> , 2011 , 12, 1478-97	3	52
10	Pulmonary toxicity of carbon nanotubes: a systematic report. <i>Nanomedicine: Nanotechnology, Biology, and Medicine</i> , 2011 , 7, 40-9	6	174
9	Cancer targeting potential of some ligand-anchored poly(propylene imine) dendrimers: a comparison. <i>Nanomedicine: Nanotechnology, Biology, and Medicine</i> , 2011 , 7, 295-304	6	133
8	Micro- and nanocarrier-mediated lung targeting. Expert Opinion on Drug Delivery, 2010, 7, 781-94	8	91
7	Dendrimers as therapeutic agents: a systematic review. <i>Journal of Pharmacy and Pharmacology</i> , 2010 , 61, 989-1003	4.8	133
6	PEGylated PPI dendritic architectures for sustained delivery of H2 receptor antagonist. <i>European Journal of Medicinal Chemistry</i> , 2009 , 44, 1155-66	6.8	76
5	Dendimer-mediated solubilization, formulation development and in vitro-in vivo assessment of piroxicam. <i>Molecular Pharmaceutics</i> , 2009 , 6, 940-50	5.6	88
4	Exploring dendrimer towards dual drug delivery: pH responsive simultaneous drug-release kinetics. Journal of Microencapsulation, 2009 , 26, 287-96	3.4	137

LIST OF PUBLICATIONS

3	Dendrimers in oncology: an expanding horizon. <i>Chemical Reviews</i> , 2009 , 109, 49-87	68.1	415
2	Surface-engineered dendrimers for dual drug delivery: a receptor up-regulation and enhanced cancer targeting strategy. <i>Journal of Drug Targeting</i> , 2008 , 16, 758-72	5.4	98
1	Pharmaceutical and Biomedical Potential of PEGylated Dendrimers. <i>Current Pharmaceutical Design</i> , 2007 , 13, 415-429	3.3	112