
Wei Huang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3843571/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mesocrystalline Ordering and Phase Transformation of Iron Oxide Biominerals in the Ultrahard Teeth of <i>Cryptochiton stelleri</i> . Small Structures, 2022, 3, .	12.0	11
2	Nanoarchitected Tough Biological Composites from Assembled Chitinous Scaffolds. Accounts of Chemical Research, 2022, 55, 1360-1371.	15.6	10
3	Tooth structure, mechanical properties, and diet specialization of Piranha and Pacu (Serrasalmidae): A comparative study. Acta Biomaterialia, 2021, 134, 531-545.	8.3	11
4	Modulation of impact energy dissipation in biomimetic helicoidal composites. Journal of Materials Research and Technology, 2020, 9, 14619-14629.	5.8	9
5	Reply to Wierzchos et al.: Microorganism-induced gypsum to anhydrite phase transformation. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 27788-27790.	7.1	0
6	A natural impact-resistant bicontinuous composite nanoparticle coating. Nature Materials, 2020, 19, 1236-1243.	27.5	115
7	Mechanism of water extraction from gypsum rock by desert colonizing microorganisms. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 10681-10687.	7.1	48
8	Multiscale Toughening Mechanisms in Biological Materials and Bioinspired Designs. Advanced Materials, 2019, 31, e1901561.	21.0	342
9	Stretched, mangled, and torn: Responses of the Ediacaran fossil Dickinsonia to variable forces. Geology, 2019, 47, 1049-1053.	4.4	20
10	The Stomatopod Telson: Convergent Evolution in the Development of a Biological Shield. Advanced Functional Materials, 2019, 29, 1902238.	14.9	23
11	How Water Can Affect Keratin: Hydrationâ€Driven Recovery of Bighorn Sheep (Ovis Canadensis) Horns. Advanced Functional Materials, 2019, 29, 1901077.	14.9	29
12	A natural energy absorbent polymer composite: The equine hoof wall. Acta Biomaterialia, 2019, 90, 267-277.	8.3	47
13	Microstructure and mechanical properties of different keratinous horns. Journal of the Royal Society Interface, 2018, 15, 20180093.	3.4	33
14	Structure and mechanical implications of the pectoral fin skeleton in the Longnose Skate (Chondrichthyes, Batoidea). Acta Biomaterialia, 2017, 51, 393-407.	8.3	11
15	Hierarchical structure and compressive deformation mechanisms of bighorn sheep (Ovis canadensis) horn. Acta Biomaterialia, 2017, 64, 1-14.	8.3	60
16	Effects of microwave sintering on the properties of porous hydroxyapatite scaffolds. Ceramics International, 2013, 39, 2389-2395.	4.8	59
17	Fabrication and characterization of porous HA/β-TCP scaffolds strengthened with micro-ribs structure. Materials Letters, 2013, 92, 274-277.	2.6	17
18	Fabrication of HA/βâ€TCP scaffolds based on microâ€syringe extrusion system. Rapid Prototyping Journal, 2013, 19, 319-326.	3.2	25

#	Article	IF	CITATIONS
19	Surface quality and biocompatibility of porous hydroxyapatite scaffolds for bone tissue engineering. Physica Status Solidi (A) Applications and Materials Science, 2013, 210, 957-963.	1.8	5