Martha A Bosch

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3843380/publications.pdf

Version: 2024-02-01

22 1,935 19 22
papers citations h-index g-index

23 23 23 1832 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Rapid Signaling of Estrogen in Hypothalamic Neurons Involves a Novel G-Protein-Coupled Estrogen Receptor that Activates Protein Kinase C. Journal of Neuroscience, 2003, 23, 9529-9540.	3.6	411
2	A G-Protein-Coupled Estrogen Receptor Is Involved in Hypothalamic Control of Energy Homeostasis. Journal of Neuroscience, 2006, 26, 5649-5655.	3.6	202
3	Insulin Excites Anorexigenic Proopiomelanocortin Neurons via Activation of Canonical Transient Receptor Potential Channels. Cell Metabolism, 2014, 19, 682-693.	16.2	179
4	Guinea Pig Kisspeptin Neurons Are Depolarized by Leptin via Activation of TRPC Channels. Endocrinology, 2011, 152, 1503-1514.	2.8	130
5	Molecular Properties of Kiss1 Neurons in the Arcuate Nucleus of the Mouse. Endocrinology, 2011, 152, 4298-4309.	2.8	113
6	Contribution of a Membrane Estrogen Receptor to the Estrogenic Regulation of Body Temperature and Energy Homeostasis. Endocrinology, 2010, 151, 4926-4937.	2.8	101
7	The Integrated Hypothalamic Tachykinin-Kisspeptin System as a Central Coordinator for Reproduction. Endocrinology, 2015, 156, 627-637.	2.8	99
8	Optogenetic Stimulation of Arcuate Nucleus Kiss1 Neurons Reveals a Steroid-Dependent Glutamatergic Input to POMC and AgRP Neurons in Male Mice. Molecular Endocrinology, 2016, 30, 630-644.	3.7	89
9	mRNA expression of ion channels in GnRH neurons: Subtype-specific regulation by 17β-estradiol. Molecular and Cellular Endocrinology, 2013, 367, 85-97.	3.2	79
10	Estrogenic-dependent glutamatergic neurotransmission from kisspeptin neurons governs feeding circuits in females. ELife, 2018, 7, .	6.0	69
11	Distribution, Neuronal Colocalization, and 17β-E2 Modulation of Small Conductance Calcium-Activated K+ Channel (SK3) mRNA in the Guinea Pig Brain. Endocrinology, 2002, 143, 1097-1107.	2.8	67
12	Molecular mechanisms that drive estradiol-dependent burst firing of Kiss1 neurons in the rostral periventricular preoptic area. American Journal of Physiology - Endocrinology and Metabolism, 2013, 305, E1384-E1397.	3.5	57
13	Estradiol Protects Proopiomelanocortin Neurons Against Insulin Resistance. Endocrinology, 2018, 159, 647-664.	2.8	52
14	Kisspeptin Activation of TRPC4 Channels in Female GnRH Neurons Requires PIP2 Depletion and cSrc Kinase Activation. Endocrinology, 2013, 154, 2772-2783.	2.8	51
15	MKRN3 inhibits the reproductive axis through actions in kisspeptin-expressing neurons. Journal of Clinical Investigation, 2020, 130, 4486-4500.	8.2	46
16	17βâ€estradiol regulation of the mRNA expression of tâ€type calcium channel subunits: Role of estrogen receptor α and estrogen receptor β. Journal of Comparative Neurology, 2009, 512, 347-358.	1.6	42
17	Kisspeptin expression in guinea pig hypothalamus: Effects of 17βâ€estradiol. Journal of Comparative Neurology, 2012, 520, 2143-2162.	1.6	38
18	Estradiol Drives the Anorexigenic Activity of Proopiomelanocortin Neurons in Female Mice. ENeuro, 2018, 5, ENEURO.0103-18.2018.	1.9	38

#	Article	lF	CITATION
19	GLP-1R Signaling Directly Activates Arcuate Nucleus Kisspeptin Action in Brain Slices but Does not Rescue Luteinizing Hormone Inhibition in Ovariectomized Mice During Negative Energy Balance. ENeuro, 2017, 4, ENEURO.0198-16.2016.	1.9	31
20	Estradiol Protects Neuropeptide Y/Agouti-Related Peptide Neurons against Insulin Resistance in Females. Neuroendocrinology, 2020, 110, 105-118.	2.5	18
21	CRISPR knockdown of Kcnq3 attenuates the M-current and increases excitability of NPY/AgRP neurons to alter energy balance. Molecular Metabolism, 2021, 49, 101218.	6.5	11
22	Deletion of <i>Stim1 < /i>in Hypothalamic Arcuate Nucleus Kiss1 Neurons Potentiates Synchronous GCaMP Activity and Protects against Diet-Induced Obesity. Journal of Neuroscience, 2021, 41, 9688-9701.</i>	3.6	10