
Heather M Macdonald

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3843188/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Pragmatic Evaluation of Older Adults' Physical Activity in Scale-Up Studies: Is the Single-Item Measure a Reasonable Option?. Journal of Aging and Physical Activity, 2022, 30, 25-32.	0.5	5
2	Refining the FitnessGram with criterion-referenced Standards for Musculoskeletal Fitness. Measurement in Physical Education and Exercise Science, 2022, 26, 267-275.	1.3	3
3	Physical activity is good for older adults—but is programme implementation being overlooked? A systematic review of intervention studies that reported frameworks or measures of implementation. British Journal of Sports Medicine, 2021, 55, 84-91.	3.1	14
4	Scaling up Action Schools! BC: How Does Voltage Drop at Scale Affect Student Level Outcomes? A Cluster Randomized Controlled Trial. International Journal of Environmental Research and Public Health, 2021, 18, 5182.	1.2	11
5	Body fat accrual trajectories for a sample of Asianâ€Canadian and Caucasianâ€Canadian children and youth: A longitudinal DXAâ€based study. Pediatric Obesity, 2020, 15, e12570.	1.4	3
6	Deficits in bone strength, density and microarchitecture in women living with HIV: A cross-sectional HR-pQCT study. Bone, 2020, 138, 115509.	1.4	10
7	Estimation of Peak Muscle Power From a Countermovement Vertical Jump in Children and Adolescents. Journal of Strength and Conditioning Research, 2019, 33, 390-398.	1.0	20
8	Sex-, Ethnic-, and Age-Specific Centile Curves for pQCT- and HR-pQCT-Derived Measures of Bone Structure and Strength in Adolescents and Young Adults. Journal of Bone and Mineral Research, 2018, 33, 987-1000.	3.1	31
9	Physical activity, but not sedentary time, influences bone strength in late adolescence. Archives of Osteoporosis, 2018, 13, 31.	1.0	8
10	Bone Strength in Girls and Boys After a Distal Radius Fracture: A 2-Year HR-pQCT Double Cohort Study. Journal of Bone and Mineral Research, 2018, 33, 229-240.	3.1	10
11	Feasibility and safety of a 6-month exercise program to increase bone and muscle strength in children with juvenile idiopathic arthritis. Pediatric Rheumatology, 2018, 16, 67.	0.9	23
12	Physical Activity, Sedentary Time, and Bone Strength From Childhood to Early Adulthood: A Mixed Longitudinal HR-pQCT study. Journal of Bone and Mineral Research, 2017, 32, 1525-1536.	3.1	85
13	Sex Differences and Growth-Related Adaptations in Bone Microarchitecture, Geometry, Density, and Strength From Childhood to Early Adulthood: A Mixed Longitudinal HR-pQCT Study. Journal of Bone and Mineral Research, 2017, 32, 250-263.	3.1	60
14	Bouts of Vigorous Physical Activity and Bone Strength Accrual During Adolescence. Pediatric Exercise Science, 2017, 29, 465-475.	0.5	20
15	Reply to: Challenges in the Acquisition and Analysis of Bone Microstructure During Growth. Journal of Bone and Mineral Research, 2016, 31, 2242-2243.	3.1	4
16	Lessons Learned from Clinical Research Using QCT, pQCT, and HR-pQCT. , 2016, , 239-265.		0
17	â€~l fell off and landed badly'. Journal of Child Health Care, 2016, 20, 98-108.	0.7	5
18	Enhancing a Somatic Maturity Prediction Model. Medicine and Science in Sports and Exercise, 2015, 47, 1755-1764.	0.2	406

#	Article	IF	CITATIONS
19	Reexamining the Surfaces of Bone in Boys and Girls During Adolescent Growth: A 12-Year Mixed Longitudinal pQCT Study. Journal of Bone and Mineral Research, 2015, 30, 2158-2167.	3.1	34
20	Reply to the Effect of Vigorous Physical Activity and Body Composition on Cortical Bone Mass in Adolescence. Journal of Bone and Mineral Research, 2015, 30, 585-586.	3.1	0
21	Deficits in distal radius bone strength, density and microstructure are associated with forearm fractures in girls: an HR-pQCT study. Osteoporosis International, 2015, 26, 1163-1174.	1.3	26
22	Action Schools! BC implementation: from efficacy to effectiveness to scale-up. British Journal of Sports Medicine, 2015, 49, 210-218.	3.1	56
23	Exercise and the Female Skeleton. , 2015, , 39-69.		0
24	Bone micro-architecture of elite alpine skiers is not reflected by bone mineral density. Osteoporosis International, 2015, 26, 2309-2317.	1.3	9
25	Bone Architecture and Strength in the Growing Skeleton: The Role of Sedentary Time. Medicine and Science in Sports and Exercise, 2015, 47, 363-372.	0.2	28
26	Influence of Physical Activity on Bone Strength in Children and Adolescents: A Systematic Review and Narrative Synthesis. Journal of Bone and Mineral Research, 2014, 29, 2161-2181.	3.1	178
27	Bone microarchitecture and strength of the radius and tibia in a reference population of young adults: an HR-pQCT study. Archives of Osteoporosis, 2014, 9, 183.	1.0	30
28	Women with previous fragility fractures can be classified based on bone microarchitecture and finite element analysis measured with HR-pQCT. Osteoporosis International, 2013, 24, 1733-1740.	1.3	103
29	Bone Acquisition in Adolescence. , 2013, , 1017-1036.		3
30	How Does Bone Quality Differ Between Healthy-weight and Overweight Adolescents and Young Adults?. Clinical Orthopaedics and Related Research, 2013, 471, 1214-1225.	0.7	13
31	Bone micro-architecture, estimated bone strength, and the muscle-bone interaction in elite athletes: An HR-pQCT study. Bone, 2013, 56, 281-289.	1.4	79
32	A comparison of bone quality at the distal radius between Asian and white adolescents and young adults: An HR-pQCT study. Journal of Bone and Mineral Research, 2013, 28, 2035-2042.	3.1	25
33	To PE, or Not to PE, That is the Question. Canadian Journal of Diabetes, 2013, 37, S263.	0.4	0
34	The Influence of Adiposity on Bone quality in Children, Adolescents and Young Adults. Canadian Journal of Diabetes, 2013, 37, S225.	0.4	0
35	Quality control for bone quality parameters affected by subject motion in high-resolution peripheral quantitative computed tomography. Bone, 2012, 50, 1304-1310.	1.4	133
36	Cortical porosity is higher in boys compared with girls at the distal radius and distal tibia during pubertal growth: An HR-pQCT study. Journal of Bone and Mineral Research, 2012, 27, 273-282.	3.1	100

#	Article	lF	CITATIONS
37	Bone Quality and Muscle Strength in Female Athletes with Lower Limb Stress Fractures. Medicine and Science in Sports and Exercise, 2011, 43, 2110-2119.	0.2	82
38	Changes in trabecular and cortical bone microarchitecture at peripheral sites associated with 18Âmonths of teriparatide therapy in postmenopausal women with osteoporosis. Osteoporosis International, 2011, 22, 357-362.	1.3	111
39	Age-related patterns of trabecular and cortical bone loss differ between sexes and skeletal sites: A population-based HR-pQCT study. Journal of Bone and Mineral Research, 2011, 26, 50-62.	3.1	298
40	Postmenopausal women with osteopenia have higher cortical porosity and thinner cortices at the distal radius and tibia than women with normal aBMD: An in vivo HR-pQCT study. Journal of Bone and Mineral Research, 2010, 25, 882-890.	3.1	264
41	Clinical Tools to Evaluate Bone Strength. Clinical Reviews in Bone and Mineral Metabolism, 2010, 8, 122-134.	1.3	17
42	Physical Activity and Skeletal Growth. , 2010, , 131-146.		2
43	International longitudinal pediatric reference standards for bone mineral content. Bone, 2010, 46, 208-216.	1.4	44
44	Bone acquisition and pediatric bone: Meeting report from the 31st Annual Meeting of the American Society for Bone and Mineral Research. IBMS BoneKEy, 2009, 6, 450-454.	0.1	2
45	Bone Mineral Accrual Across Growth in a Mixed-Ethnic Group of Children: Are Asian Children Disadvantaged from an Early Age?. Calcified Tissue International, 2009, 84, 366-378.	1.5	39
46	The link between physical activity and bone strength across the lifespan. International Journal of Clinical Rheumatology, 2009, 4, 437-463.	0.3	8
47	Does a novel school-based physical activity model benefit femoral neck bone strength in pre- and early pubertal children?. Osteoporosis International, 2008, 19, 1445-1456.	1.3	80
48	Bone Structure and Volumetric BMD in Overweight Children: A Longitudinal Study. Journal of Bone and Mineral Research, 2008, 23, 1946-1953.	3.1	98
49	Bone Acquisition in Adolescence. , 2008, , 743-758.		1
50	Peripheral Quantitative Computed Tomography in Children and Adolescents: The 2007 ISCD Pediatric Official Positions. Journal of Clinical Densitometry, 2008, 11, 59-74.	0.5	83
51	Action Schools! BC: A school-based physical activity intervention designed to decrease cardiovascular disease risk factors in children. Preventive Medicine, 2008, 46, 525-531.	1.6	94
52	Measuring bone strength from in vivo micro-CT using the finite element method. Bone, 2008, 43, S59.	1.4	0
53	Bone acquisition and pediatric bone: Meeting report from the 30th Annual Meeting of the American Society for Bone and Mineral Research. IBMS BoneKEy, 2008, 5, 396-400.	0.1	0
54	The Biomechanical Basis of Bone Strength Development during Growth. , 2007, 51, 13-32.		34

Heather M Macdonald

#	Article	IF	CITATIONS
55	School-Based Physical Activity Does Not Compromise Children's Academic Performance. Medicine and Science in Sports and Exercise, 2007, 39, 371-376.	0.2	199
56	Is a School-Based Physical Activity Intervention Effective for Increasing Tibial Bone Strength in Boys and Girls?. Journal of Bone and Mineral Research, 2007, 22, 434-446.	3.1	155
57	Bone acquisition and pediatric bone. Meeting report from the 29th Annual Meeting of the American Society for Bone and Mineral Research. BoneKEy Osteovision, 2007, 4, 352-356.	0.6	1
58	Bone strength and its determinants in pre- and early pubertal boys and girls. Bone, 2006, 39, 598-608.	1.4	157
59	Growing bones: how important is exercise?. Current Opinion in Orthopaedics, 2006, 17, 431-437.	0.3	4
60	Predicting physical activity intention and behaviour among children in a longitudinal sample. Social Science and Medicine, 2006, 62, 3146-3156.	1.8	104
61	Lessons learned from Action Schools! BC—An â€~active school' model to promote physical activity in elementary schools. Journal of Science and Medicine in Sport, 2006, 9, 413-423.	0.6	130
62	Change in Cortical Bone Density and Its Distribution Differs between Boys and Girls during Puberty. Journal of Clinical Endocrinology and Metabolism, 2006, 91, 2555-2561.	1.8	42
63	Action Schools! BC: a socioecological approach to modifying chronic disease risk factors in elementary school children. Preventing Chronic Disease, 2006, 3, A60.	1.7	44
64	Examining Bone Surfaces Across Puberty: A 20-Month pQCT Trial. Journal of Bone and Mineral Research, 2005, 20, 1202-1207.	3.1	61
65	Maturity- and sex-related changes in tibial bone geometry, strength and bone–muscle strength indices during growth: A 20-month pQCT study. Bone, 2005, 36, 1003-1011.	1.4	63
66	Application of Magnetic Resonance Imaging to Evaluation of Femoral Neck Structure in Growing Girls. Journal of Clinical Densitometry, 2004, 7, 161-168.	0.5	20
67	Sedentary time negates the positive influence of moderate-to-vigorous physical activity but not vigorous physical activity on bone strength in adolescent girls. Bone Abstracts, 0, , .	0.0	0