Shuya Ning

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3843079/publications.pdf

Version: 2024-02-01

713013 758635 34 437 12 21 h-index citations g-index papers 34 34 34 795 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Research on Real-Time Disconnector State Evaluation Method Based on Multi-Source Images. IEEE Transactions on Instrumentation and Measurement, 2022, 71, 1-15.	2.4	3
2	Overcoming energy loss of thermally activated delayed fluorescence sensitized-OLEDs by developing a fluorescent dopant with a small singlet–triplet energy splitting. Journal of Materials Chemistry C, 2022, 10, 1681-1689.	2.7	7
3	Stable Metal-Insulator-Metal Electron Source Based on Porous Alumina. IEEE Electron Device Letters, 2022, 43, 1129-1132.	2.2	1
4	Improving the random lasing performance using Au@SiO2 nanocubes-silver film hybrid structure. Journal of Luminescence, 2021, 231, 117788.	1.5	10
5	Non-Thermal Intervention of Lung Tumor by Core-Shell Magnetic Nanoparticles in a Magnetic Field. Applied Sciences (Switzerland), 2021, 11, 2003.	1.3	O
6	Theoretical Analysis and Design of an Innovative Coil Structure for Transcranial Magnetic Stimulation. Applied Sciences (Switzerland), 2021, 11, 1960.	1.3	1
7	Research on a Cell Proliferation Model Based on A549 Cell Line With Magnetic Field Stimulation. IEEE Transactions on Magnetics, 2021, 57, 1-4.	1.2	O
8	Field-Circuit Coupling and Electromagneticâ€"Thermalâ€"Mechanical Coupling Analysis of the Single-Stage Fast Linear Transformer Driver Using Time-Domain Finite Integration Technique. IEEE Transactions on Magnetics, 2021, 57, 1-5.	1.2	3
9	Dibenzo[<i>f</i> , <i>h</i>]furo[2,3- <i>b</i>]quinoxaline-based molecular scaffolds as deep blue fluorescence materials for organic light-emitting diodes. New Journal of Chemistry, 2021, 46, 419-425.	1.4	3
10	Numerical Analysis of a Single-Stage Fast Linear Transformer Driver Using Field-Circuit Coupled Time-Domain Finite Integration Theory. Applied Sciences (Switzerland), 2020, 10, 8301.	1.3	4
11	Random lasing based on a nanoplasmonic hybrid structure composed of (Au core)-(Ag shell) nanorods with Ag film. Optical Materials Express, 2020, 10, 1204.	1.6	6
12	lon flow field modelling based on lattice Boltzmann method and its mesh refinement. IET Generation, Transmission and Distribution, 2020, 14, 4539-4546.	1.4	0
13	Enhanced lasing from organic gain medium by Au nanocube@SiO ₂ core-shell nanoparticles with optimal size. Optical Materials Express, 2018, 8, 3014.	1.6	10
14	Study on the Effects of Magnetic Stimulation on K-Ras-Driven Lung Cancer in Mice. IEEE Transactions on Magnetics, 2018, 54, 1-4.	1.2	2
15	The Design and Analysis of a Static and Extremely Low-Frequency Magnetic Field Stimulation Platform for Cell Prolifation Inhibition. , 2018, , .		О
16	Plasmonically enhanced lasing by different size silver nanoparticles-silver film hybrid structure. Organic Electronics, 2017, 50, 403-410.	1.4	4
17	Study on planar coil with multi-frequency stimulations applied to an eddy current non-destructive testing. , 2017, , .		2
18	Plasmonic enhancement of random lasing from dye-doped polymer film by bristled Ag/TiO_2 composite nanowires. Optical Materials Express, 2016, 6, 3725.	1.6	7

#	Article	IF	CITATIONS
19	Enhancement of lasing in organic gain media assisted by the metallic nanoparticles–metallic film plasmonic hybrid structure. Journal of Materials Chemistry C, 2016, 4, 5717-5724.	2.7	8
20	The enhanced random lasing from dye-doped polymer films with different-sized silver nanoparticles. Organic Electronics, 2016, 30, 165-170.	1.4	28
21	Realizing improved performance of down-conversion white organic light-emitting diodes by localized surface plasmon resonance effect of Ag nanoparticles. Organic Electronics, 2016, 31, 234-239.	1.4	19
22	Electric field-modulated amplified spontaneous emission in organo-lead halide perovskite CH3NH3PbI3. Applied Physics Letters, 2015, 107, .	1.5	19
23	The molecular picture of amplified spontaneous emission of star-shaped functionalized-truxene derivatives. Journal of Materials Chemistry C, 2015, 3, 7004-7013.	2.7	12
24	Ag-encapsulated Au plasmonic nanorods for enhanced dye-sensitized solar cell performance. Journal of Materials Chemistry A, 2015, 3, 4659-4668.	5.2	65
25	Modified deposition process of electron transport layer for efficient inverted planar perovskite solar cells. Chemical Communications, 2015, 51, 8986-8989.	2.2	28
26	Enhanced lasing assisted by the Ag-encapsulated Au plasmonic nanorods. Optics Letters, 2015, 40, 990.	1.7	12
27	Tunable lasing on silver island films by coupling to the localized surface plasmon. Optical Materials Express, 2015, 5, 629.	1.6	9
28	Enhancement of amplified spontaneous emission in organic gain media by the metallic film. Organic Electronics, 2014, 15, 2052-2058.	1.4	17
29	Silver-loaded anatase nanotubes dispersed plasmonic composite photoanode for dye-sensitized solar cells. Organic Electronics, 2014, 15, 2847-2854.	1.4	18
30	Theoretical insight into the deep-blue amplified spontaneous emission of new organic semiconductor molecules. Organic Electronics, 2014, 15, 3144-3153.	1.4	19
31	Optics–electrics highways: Plasmonic silver nanowires@TiO2 core–shell nanocomposites for enhanced dye-sensitized solar cells performance. Nano Energy, 2014, 10, 181-191.	8.2	67
32	Structure–Property Relationship of Amplified Spontaneous Emission in Organic Semiconductor Materials: TPD, DPABP, and NPB. Journal of Physical Chemistry A, 2013, 117, 10903-10911.	1.1	15
33	A tris(8-hydroxyquinoline) aluminum-based organic bistable device using ITO surfaces modified by Ag nanoparticles. Journal Physics D: Applied Physics, 2013, 46, 445107.	1.3	1
34	Random lasing from granular surface of waveguide with blends of PS and PMMA. Optics Express, 2011, 19, 16126.	1.7	37