
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3842626/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	1,3-Dioxane inside fullerenes: the innovative conformational behavior of usual cyclic system. Fullerenes Nanotubes and Carbon Nanostructures, 2021, 29, 196-201.	2.1	0
2	Conformational Analysis of 2-Isopropyl-5-methoxy-5-methyl-1,3,2-dioxaborinane in Chloroform Solution: Effect of "Magic―Solvent Molecule. Russian Journal of Organic Chemistry, 2021, 57, 20-24.	0.8	2
3	Synthesis, Structure, and Conformational Analysis of N-(2,4-Dichlorophenyl)-2-[6-methyl-2,4-dioxo-3-(thietan-3-yl)-1,2,3,4-tetrahydropyrimidine-1-yl]acetamide. Russian Journal of General Chemistry, 2021, 91, 785-791.	0.8	2
4	Structure and Conformational Analysis of 5,5-Bis(bromomethyl)-2-[4-(dimethylamino)phenyl]-1,3-dioxane. Russian Journal of Organic Chemistry, 2021, 57, 1268-1274.	0.8	1
5	Structure and Conformational Analysis of 5-Methyl-2,2-diphenyl-1,3-dioxane. Russian Journal of Organic Chemistry, 2020, 56, 1764-1769.	0.8	1
6	Stereochemistry of Simple Molecules inside Nanotubes and Fullerenes: Unusual Behavior of Usual Systems. Molecules, 2020, 25, 2437.	3.8	15
7	Structure and Conformational Analysis of 5,5-Bis(bromomethyl)-2,2-diphenyl-1,3-dioxane. Russian Journal of Organic Chemistry, 2020, 56, 1-6.	0.8	8
8	Relative Stability of Digermane Conformers in Nanotubes. Russian Journal of General Chemistry, 2020, 90, 93-98.	0.8	1
9	Conformational Properties of Ethane and Its Analogs in Nanotubes. Russian Journal of General Chemistry, 2019, 89, 1271-1278.	0.8	5
10	Influence of Nanotubes on the Relative Stability of Orthogonal Form of Dialane. Russian Journal of General Chemistry, 2019, 89, 1792-1799.	0.8	1
11	Conformational Analysis of 5-Ethyl-5-hydroxymethyl-2,2-dimethyl-1,3-dioxane. Russian Journal of Organic Chemistry, 2019, 55, 502-507.	0.8	9
12	Structure and Conformational Analysis of 5,5-Bis(bromomethyl)-2-methyl-2-phenyl-1,3-dioxane. Russian Journal of General Chemistry, 2019, 89, 199-203.	0.8	2
13	Effect of Chemical Composition of Fullerenes on the Structure and Internal Rotation Barrier of Encapsulated Ammonia Borane Molecule. Russian Journal of General Chemistry, 2019, 89, 2229-2234.	0.8	2
14	Structure and Conformational Analysis of 5,5-Bis(bromomethyl)-2-phenyl-1,3-dioxane. Russian Journal of General Chemistry, 2018, 88, 397-402.	0.8	4
15	Conformational Analysis of 5-Methyl-1,3-oxathiane. Russian Journal of Organic Chemistry, 2018, 54, 1819-1824.	0.8	0
16	Simulation of Pyramidal Inversion of Nitrogen in Tetrahydro-1,3-Oxazines in Polar Medium. Journal of Structural Chemistry, 2018, 59, 1374-1380.	1.0	7
17	Ammonia Borane in Nanotubes: The Preference of Eclipsed Conformation. Russian Journal of Inorganic Chemistry, 2018, 63, 1069-1075.	1.3	2
18	Structure and Conformational Analysis of 5,5-Bis(bromomethyl)-2-(4-methoxyphenyl)-1,3-dioxane. Russian Journal of Organic Chemistry, 2018, 54, 1076-1079.	0.8	4

#	Article	IF	CITATIONS
19	Recognition of R- and S-Isomers of α-Alanine by Chiral Nanotubes. Russian Journal of General Chemistry, 2018, 88, 930-934.	0.8	1
20	Direction of the Reaction of 6-Methylpyrimidine-2,4(1H,3H)-dione with 2-Chloromethylthiirane: N1- or N3-Thietanyl Derivative?. Russian Journal of Organic Chemistry, 2018, 54, 918-922.	0.8	3
21	The Influence of Chemical Composition of Fullerenes on the Structural Features and Conformational Preference of Encapsulated Disilane Molecule. Russian Journal of Inorganic Chemistry, 2018, 63, 917-922.	1.3	3
22	Conformational Analysis of Fluoroethane in Nanotubes. Russian Journal of Organic Chemistry, 2018, 54, 644-651.	0.8	4
23	Structure and conformational analysis of 2-hydroxy-5-isobutyl-1,3,2-dioxaborinane. Russian Journal of General Chemistry, 2017, 87, 44-49.	0.8	0
24	1,1,1-Trifluoroethane encapsulated in fullerenes: Structural and conformational features. Russian Journal of Organic Chemistry, 2017, 53, 449-453.	0.8	0
25	Hexahydropyrimidin-2-one in nanotubes: Structural changes and conformational preferences. Russian Journal of General Chemistry, 2017, 87, 1461-1465.	0.8	2
26	Conformational transformations and autooxidation of 5-bromo-2-(2-methylpropyl)-5-nitro-1,3,2-dioxaborinane. Russian Journal of Organic Chemistry, 2017, 53, 926-931.	0.8	0
27	Conformational analysis of 2-isopropyl-5-methyl-5-methoxymethyl-1,3,2-dioxaborinane. Russian Journal of Organic Chemistry, 2017, 53, 1678-1681.	0.8	1
28	Cyclohexane in nanotubes: Direct chair–chair interconversion. Russian Journal of General Chemistry, 2017, 87, 2558-2562.	0.8	1
29	Dimethyl ether in nanotubes: Structural variations and conformational preferences. Russian Journal of Organic Chemistry, 2016, 52, 1835-1841.	0.8	Ο
30	Conformational analysis of 1,3-dioxane in nanotubes. Russian Journal of Organic Chemistry, 2016, 52, 1686-1691.	0.8	6
31	The influence of carbon nanotubes on the relative stability of diborane molecular forms. Russian Journal of General Chemistry, 2016, 86, 231-240.	0.8	2
32	Comparative conformational analysis of 2,2-dimethyl and 2,2,5-trimethyl-1,3-dioxanes and their 2-heteroanalogs with silicon and germanium atoms. Russian Journal of General Chemistry, 2016, 86, 321-325.	0.8	2
33	Relative stability of 5-methyl- and 3,5-dimethyltetrahydro-1,3-oxazine conformers. Russian Journal of Organic Chemistry, 2016, 52, 409-413.	0.8	1
34	1,3-Dioxa-2-silacyclohexane in nanotubes: Conformational transformations and structural features. Russian Journal of General Chemistry, 2016, 86, 1300-1305.	0.8	5
35	Fullerene Si20: Influence on the conformational behavior of encapsulated ethane molecule. Russian Journal of General Chemistry, 2016, 86, 1444-1446.	0.8	2
36	Hydrazine: Structural features and conformational preference in nanotubes. Russian Journal of General Chemistry, 2016, 86, 2000-2007.	0.8	5

#	Article	IF	CITATIONS
37	The effect of chemical composition of the fullerene on the conformational preference of the encapsulated hexafluoroethane molecule. Russian Journal of General Chemistry, 2016, 86, 1108-1114.	0.8	2
38	Conformational analysis of 5-bromo-5-nitro-1,3-dioxane. Russian Journal of General Chemistry, 2016, 86, 46-50.	0.8	0
39	Molecular structure and conformational preference of 2-methyl-5-nitro-5-bromo-1,3,2-dioxaborinane and its complex with pyridine. Journal of Structural Chemistry, 2015, 56, 1360-1366.	1.0	1
40	Recognition of the R- and S-isomers of 1-fluoroethanol by a chiral nanotube. Russian Journal of General Chemistry, 2015, 85, 2813-2815.	0.8	2
41	Conformational behavior of 1,3,2-dioxaborinane molecule encapsulated in fullerenes. Russian Journal of General Chemistry, 2015, 85, 198-199.	0.8	5
42	Nanotube effect on conformation of encapsulated disilane molecule. Russian Journal of General Chemistry, 2015, 85, 1989-1991.	0.8	6
43	Conformational behavior of 1,1,1-trifluoroethane in nanotubes. Russian Journal of Organic Chemistry, 2014, 50, 1534-1539.	0.8	13
44	Computer simulation of conformational transformations of 1,3-dioxanes and their 2-sila and 2-bora analogs. Russian Journal of Organic Chemistry, 2014, 50, 1227-1246.	0.8	23
45	Conformation of hydroxyborane encapsulated within nanotubes. Russian Journal of General Chemistry, 2014, 84, 157-159.	0.8	4
46	Theoretical estimation of conformational preference of piperidine molecule encapsulated in a nanotube. Russian Journal of Organic Chemistry, 2014, 50, 143-144.	0.8	1
47	Conformation of 2,2-dimethylpropane encapsulated in fullerenes. Russian Journal of Organic Chemistry, 2014, 50, 921-922.	0.8	1
48	Conformational behavior of methanethiol in fullerenes. Russian Journal of Organic Chemistry, 2014, 50, 1073-1074.	0.8	1
49	Conformational analysis of 3-methyltetrahydro-1,3-oxazine. Russian Journal of General Chemistry, 2014, 84, 1924-1929.	0.8	4
50	Conformational preferences of 2,2-dimethylpropane in nanotubes. Russian Journal of General Chemistry, 2014, 84, 433-438.	0.8	2
51	Conformational preference of perhydro-1,3,2-dioxazine inside nanotubes. Russian Journal of General Chemistry, 2014, 84, 525-530.	0.8	3
52	Conformational preference of hexafluoroethane molecule encapsulated in fullerenes. Russian Journal of Organic Chemistry, 2014, 50, 456-457.	0.8	7
53	Conformational analysis of 5,5-dinitro-1,3-dioxane. Russian Journal of Organic Chemistry, 2014, 50, 725-728.	0.8	3
54	Conformational behavior of methanol in a nanotube. Russian Journal of Organic Chemistry, 2014, 50, 765-766.	0.8	6

#	Article	IF	CITATIONS
55	Theoretical evaluation of conformational preference of the ethane molecule in fullerene C60. Russian Journal of General Chemistry, 2013, 83, 1163-1164.	0.8	14
56	Theoretical evaluation of conformational preference of the propane molecule in nanotubes. Russian Journal of General Chemistry, 2013, 83, 1165-1166.	0.8	13
5 7	Conformational transformations of 1,3-diselenane. Russian Journal of General Chemistry, 2013, 83, 1002-1003.	0.8	1
58	Theoretical evaluation of relative stability of diazadifluoride isomers in nanotubes. Russian Journal of General Chemistry, 2013, 83, 140-142.	0.8	8
59	Theoretical estimation of the stability of cis- and trans-difluoroethylene in nanotubes. Russian Journal of Organic Chemistry, 2013, 49, 765-767.	0.8	3
60	Conformational analysis of stereoisomers of 2,4-dimethyl-5-isopropyl-1,3,2-dioxaborinane. Russian Journal of Organic Chemistry, 2013, 49, 298-302.	0.8	4
61	Theoretical evaluation of conformational preference of ethane molecule encapsulated in a nanotube. Russian Journal of Organic Chemistry, 2013, 49, 313-314.	0.8	22
62	Influence of the nanotube type on the conformational behavior of encapsulated ethane molecule. Russian Journal of General Chemistry, 2013, 83, 2334-2336.	0.8	16
63	Conformational preference of the hexachloroethane molecule in fullerene C80. Russian Journal of General Chemistry, 2013, 83, 1790-1791.	0.8	5
64	Theoretical estimation of the barrier to pyramidal inversion of ammonia and trimethylamine encapsulated in fullerenes. Russian Journal of Organic Chemistry, 2013, 49, 1845-1847.	0.8	5
65	Conformational behavior of ethane molecule encapsulated in a nanotube. Russian Journal of Organic Chemistry, 2013, 49, 1231-1235.	0.8	20
66	Theoretical evaluation of conformational preference of the 2,2,3,3-tetramethylbutane molecule in nanotubes. Russian Journal of General Chemistry, 2013, 83, 1455-1456.	0.8	9
67	Theoretical evaluation of inversion barier of trimethylamine in nanotubes. Russian Journal of General Chemistry, 2013, 83, 1453-1454.	0.8	1
68	Theoretical evaluation of conformational preference of the hexafluoroethane molecule in nanotubes. Russian Journal of General Chemistry, 2013, 83, 1623-1625.	0.8	12
69	Synthesis of thietanyl-substituted pyrimidine-2,4(1H,3H)-dions. Russian Journal of Organic Chemistry, 2013, 49, 743-745.	0.8	14
70	Conformational analysis of 2,5-dimethyl-2-bora-1,3-diheterocyclohexanes with oxygen, nitrogen, and sulfur atoms in the ring. Russian Journal of Organic Chemistry, 2012, 48, 753-754.	0.8	1
71	Conformational analysis of 2,2-dimethyl-5-alkyl-1,3-dioxa-2-silacyclohexanes. Russian Journal of General Chemistry, 2012, 82, 1509-1512.	0.8	2
72	Relative stability and conformations of protonated forms of tetrahydro-1,3-oxazine. Russian Journal of Organic Chemistry, 2012, 48, 620-621.	0.8	0

5

#	Article	IF	CITATIONS
73	Comparative basicity of 1,3,2-oxazaborinanes and tetrahydro-1,3-oxazines. Russian Journal of General Chemistry, 2012, 82, 779-780.	0.8	0
74	Conformational conversions in perhydro-1,3,5-dithiazine. Russian Journal of General Chemistry, 2012, 82, 517-518.	0.8	1
75	Conformational transformations of perhydro-1,3,2-dioxazine. Russian Journal of General Chemistry, 2012, 82, 783-784.	0.8	3
76	Conformational analysis of 5-methyl- and 2,2,5-trimethyl-1,3-dithianes. Russian Journal of General Chemistry, 2012, 82, 864-868.	0.8	0
77	Conformational analysis of 1,3-oxathiane. Russian Journal of General Chemistry, 2012, 82, 869-873.	0.8	2
78	Conformational analysis of perhydro-1,3,5-dioxazine. Russian Journal of Organic Chemistry, 2012, 48, 875-876.	0.8	1
79	Reactions of cyclic boric acids esters with paraformaldehyde. Russian Journal of General Chemistry, 2011, 81, 542-544.	0.8	5
80	Conformational analysis of 2-methyl-1,3,2-dithiaborinane sulfonium ions. Russian Journal of Organic Chemistry, 2011, 47, 791-792.	0.8	0
81	Conformational analysis of 2-methyl-1,3,2-oxaza- and 2-methyl-1,3,2-oxathiaborinane associates with water molecule. Russian Journal of Organic Chemistry, 2011, 47, 1380-1384.	0.8	0
82	Conformational analysis of hexahydropyrimidine-2-thione, its ammonium and sulfonium ions. Russian Journal of Organic Chemistry, 2011, 47, 1783-1785.	0.8	0
83	Unusual conformational isomerization of 2,2-dimethyl-1,3-dioxa-2-germacyclohexane. Chemistry of Heterocyclic Compounds, 2011, 47, 117-118.	1.2	2
84	Conformational properties of oxonium and sulfonium ions of 1,3-oxathiane. Chemistry of Heterocyclic Compounds, 2011, 47, 255-257.	1.2	0
85	Relative stability of the complexes of 2-methyl-1,3,2-dioxaborinane with aldehydes and acetone. Chemistry of Heterocyclic Compounds, 2011, 47, 258-259.	1.2	1
86	Theoretical estimation of the relative stability of tetrahydro-1,3-oxazine associates with water molecule. Chemistry of Heterocyclic Compounds, 2011, 47, 521-523.	1.2	1
87	Conformational behavior of hexahydropyrimidin-2-one and its ammonium and oxonium ions. Chemistry of Heterocyclic Compounds, 2011, 47, 651-653.	1.2	2
88	Unusual conformational isomerization of oxygen-containing silacyclohexanes. Russian Journal of Organic Chemistry, 2010, 46, 945-946.	0.8	4
89	Theoretical evaluation of the geometry and conformational properties of oxonium and ammonium ions of tetra- hydro-1,3-oxazine. Chemistry of Heterocyclic Compounds, 2010, 46, 129-130.	1.2	0
90	Configurational and conformational properties of the complex of 2,5-dimethyl- 1,3,2-dioxaborinane with hydroxyl anion. Chemistry of Heterocyclic Compounds, 2010, 46, 367-369.	1.2	2

VALERIJ KUZNETSOV

#	Article	IF	CITATIONS
91	Conformational analysis of 2,4-dialkyl-1,3,2-dioxaborinanes. Chemistry of Heterocyclic Compounds, 2010, 46, 1006-1010.	1.2	2
92	Conformational isomerism of 3-isopropyl-1,3-dioxane. Chemistry of Heterocyclic Compounds, 2009, 45, 111-112.	1.2	1
93	Conformational isomerization of 4-methyl-1,3-dioxane. Chemistry of Heterocyclic Compounds, 2009, 45, 536-538.	1.2	1
94	Routes of conformational isomerization of 4-substituted 1,3,2-dioxaborinanes. Chemistry of Heterocyclic Compounds, 2009, 45, 742-744.	1.2	1
95	Theoretical estimation of the enthalpy of formation of complexes of cyclic esters of methylboric acid with the hydroxyl anion. Chemistry of Heterocyclic Compounds, 2009, 45, 886-887.	1.2	1
96	Nonempirical study of 2-methyl- 1,3,2-dioxaborinane–methanol complexes. Chemistry of Heterocyclic Compounds, 2009, 45, 1004-1008.	1.2	2
97	Theoretical barriers to the internal rotation of a nitro group in 2-methyl-5-nitro-1,3,2-dioxaborinane. Chemistry of Heterocyclic Compounds, 2008, 44, 1300-1301.	1.2	2
98	Simulation of potential energy surface of 2-methyl-1,3,2-dioxaborinane and its oxonium ion. Russian Journal of Organic Chemistry, 2008, 44, 778-779.	0.8	4
99	Computer modelling of the conformational equilibrium of 2-and 2,5,5-substituted 1,3,2-dioxaborinanes. Chemistry of Heterocyclic Compounds, 2007, 43, 1577-1581.	1.2	5
100	Simulation of the potential energy surface of 2-methyl-1,3-dioxane. Russian Journal of Organic Chemistry, 2006, 42, 612-614.	0.8	6
101	Borylation of saturated heterocycles with several heteroatoms. (Review). Chemistry of Heterocyclic Compounds, 2006, 42, 559-569.	1.2	10
102	Reactions of 1,3-dioxacycloalkanes and their 2-arsena, 2-bora, 2-germa, 2-sila, and 2-thia analogs with nitriles. Russian Chemical Bulletin, 2005, 54, 1543-1551.	1.5	14