List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3842253/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	New Mass Limit for White Dwarfs: Super-Chandrasekhar Type Ia Supernova as a New Standard Candle. Physical Review Letters, 2013, 110, 071102.	7.8	106
2	Description of Pseudoâ€Newtonian Potential for the Relativistic Accretion Disks around Kerr Black Holes. Astrophysical Journal, 2002, 581, 427-430.	4.5	82
3	Bypass to Turbulence in Hydrodynamic Accretion: Lagrangian Analysis of Energy Growth. Astrophysical Journal, 2005, 629, 373-382.	4.5	80
4	Strongly magnetized cold degenerate electron gas: Mass-radius relation of the magnetized white dwarf. Physical Review D, 2012, 86, .	4.7	74
5	Bypass to Turbulence in Hydrodynamic Accretion Disks: An Eigenvalue Approach. Astrophysical Journal, 2005, 629, 383-396.	4.5	62
6	Hypernuclear matter in strong magnetic field. Nuclear Physics A, 2013, 898, 43-58.	1.5	57
7	Two-temperature accretion around rotating black holes: a description of the general advective flow paradigm in the presence of various cooling processes to explain low to high luminous sources. Monthly Notices of the Royal Astronomical Society, 2010, 402, 961-984.	4.4	42
8	A POSSIBLE EVOLUTIONARY SCENARIO OF HIGHLY MAGNETIZED SUPER-CHANDRASEKHAR WHITE DWARFS: PROGENITORS OF PECULIAR TYPE Ia SUPERNOVAE. Astrophysical Journal Letters, 2013, 767, L14.	8.3	39
9	MASS OF HIGHLY MAGNETIZED WHITE DWARFS EXCEEDING THE CHANDRASEKHAR LIMIT: AN ANALYTICAL VIEW. Modern Physics Letters A, 2012, 27, 1250084.	1.2	35
10	Maximum mass of stable magnetized highly super-Chandrasekhar white dwarfs: stable solutions with varying magnetic fields. Journal of Cosmology and Astroparticle Physics, 2014, 2014, 050-050.	5.4	34
11	GRMHD formulation of highly super-Chandrasekhar rotating magnetized white dwarfs: stable configurations of non-spherical white dwarfs. Monthly Notices of the Royal Astronomical Society, 2015, 454, 752-765.	4.4	34
12	NEUTRINO ASYMMETRY AROUND BLACK HOLES: NEUTRINOS INTERACT WITH GRAVITY. Modern Physics Letters A, 2005, 20, 2145-2155.	1.2	33
13	Modified Einstein's gravity as a possible missing link between sub- and super-Chandrasekhar type Ia supernovae. Journal of Cosmology and Astroparticle Physics, 2015, 2015, 045-045.	5.4	33
14	VIOLATION OF CHANDRASEKHAR MASS LIMIT: THE EXCITING POTENTIAL OF STRONGLY MAGNETIZED WHITE DWARFS. International Journal of Modern Physics D, 2012, 21, 1242001.	2.1	31
15	Continuous gravitational wave from magnetized white dwarfs and neutron stars: possible missions for LISA, DECIGO, BBO, ET detectors. Monthly Notices of the Royal Astronomical Society, 2019, 490, 2692-2705.	4.4	27
16	Stability of Accretion Disks around Rotating Black Holes: A Pseudo–Generalâ€Relativistic Fluid Dynamical Study. Astrophysical Journal, 2003, 586, 1268-1279.	4.5	26
17	SPACETIME CURVATURE COUPLING OF SPINORS IN EARLY UNIVERSE: NEUTRINO ASYMMETRY AND A POSSIBLE SOURCE OF BARYOGENESIS. Modern Physics Letters A, 2006, 21, 399-408.	1.2	26
18	Gravity-induced neutrino–antineutrino oscillation: CPT and lepton number non-conservation under gravity. Classical and Quantum Gravity, 2007, 24, 1433-1442.	4.0	26

#	Article	IF	CITATIONS
19	Global solution for a viscous accretion disc around a rotating compact object: pseudo-general-relativistic study. Monthly Notices of the Royal Astronomical Society, 2003, 342, 274-286.	4.4	25
20	Effects of Anisotropy on Strongly Magnetized Neutron and Strange Quark Stars in General Relativity. Astrophysical Journal, 2021, 922, 149.	4.5	23
21	GRAVITATIONALLY INDUCED NEUTRINO ASYMMETRY. Modern Physics Letters A, 2003, 18, 779-785.	1.2	22
22	Modified Einstein's gravity to probe the sub- and super-Chandrasekhar limiting mass white dwarfs: a new perspective to unify under- and over-luminous type la supernovae. Journal of Cosmology and Astroparticle Physics, 2018, 2018, 007-007.	5.4	22
23	Revisiting some physics issues related to the new mass limit for magnetized white dwarfs. Modern Physics Letters A, 2014, 29, 1450035.	1.2	21
24	Luminosity and cooling of highly magnetized white dwarfs: suppression of luminosity by strong magnetic fields. Monthly Notices of the Royal Astronomical Society, 2018, 477, 2705-2715.	4.4	20
25	GRMHD formulation of highly super-Chandrasekhar magnetized white dwarfs: stable configurations of non-spherical white dwarfs. Journal of Cosmology and Astroparticle Physics, 2015, 2015, 016-016.	5.4	18
26	Soft gamma-ray repeaters and anomalous X-ray pulsars as highly magnetized white dwarfs. Journal of Cosmology and Astroparticle Physics, 2016, 2016, 007-007.	5.4	18
27	CPT and lepton number violation in the neutrino sector: Modified mass matrix and oscillation due to gravity. Physical Review D, 2008, 77, .	4.7	16
28	Asymptotically flat vacuum solution in modified theory of Einstein's gravity. European Physical Journal C, 2019, 79, 1.	3.9	16
29	Stochastically driven instability in rotating shear flows. Journal of Physics A: Mathematical and Theoretical, 2013, 46, 035501.	2.1	15
30	Timescales for Detection of Super-Chandrasekhar White Dwarfs by Gravitational-wave Astronomy. Astrophysical Journal, 2020, 896, 69.	4.5	15
31	DISK-OUTFLOW COUPLING: ENERGETICS AROUND SPINNING BLACK HOLES. Astrophysical Journal, 2010, 713, 105-114.	4.5	14
32	AR Sco as a possible seed of highly magnetized white dwarf. Monthly Notices of the Royal Astronomical Society, 2017, 472, 3564-3569.	4.4	14
33	SEARCH FOR CHAOS IN NEUTRON STAR SYSTEMS: IS Cyg X-3 A BLACK HOLE?. Astrophysical Journal, 2010, 708, 862-867.	4.5	13
34	NEW MASS LIMIT OF WHITE DWARFS. International Journal of Modern Physics D, 2013, 22, 1342004.	2.1	13
35	Quantum correlations in neutrino oscillations in curved spacetime. Physical Review D, 2019, 100, .	4.7	13
36	Suppression of luminosity and mass–radius relation of highly magnetized white dwarfs. Monthly Notices of the Royal Astronomical Society, 2020, 496, 894-902.	4.4	13

#	Article	IF	CITATIONS
37	Ultraluminous X-ray sources as magnetically powered sub-Eddington advective accretion flows around stellar mass black holes. Monthly Notices of the Royal Astronomical Society: Letters, 2019, 482, L24-L28.	3.3	12
38	Growing pseudo-eigenmodes and positive logarithmic norms in rotating shear flows. New Journal of Physics, 2011, 13, 023029.	2.9	11
39	Can the viscosity in astrophysical black hole accretion disks be close to its string theory bound?. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2013, 721, 151-158.	4.1	10
40	Revised density of magnetized nuclear matter at the neutron drip line. Physical Review C, 2014, 89, .	2.9	10
41	Spectral and time series analyses of the Seyfert 1 AGN: Zw 229.015. Monthly Notices of the Royal Astronomical Society, 2017, 466, 3951-3960.	4.4	10
42	Gravitational Wave in f(R) Gravity: Possible Signature of Sub- and Super-Chandrasekhar Limiting-mass White Dwarfs. Astrophysical Journal, 2021, 909, 65.	4.5	10
43	2.5-dimensional solution of the advective accretion disk: a self-similar approach. Research in Astronomy and Astrophysics, 2009, 9, 157-167.	1.7	9
44	Origin of nonlinearity and plausible turbulence by hydromagnetic transient growth in accretion disks: Faster growth rate than magnetorotational instability. Physical Review E, 2015, 92, 023005.	2.1	9
45	Magnetized advective accretion flows: formation of magnetic barriers in magnetically arrested discs. Monthly Notices of the Royal Astronomical Society, 2018, 476, 2396-2409.	4.4	9
46	FSRQ/BL Lac dichotomy as the magnetized advective accretion process around black holes: a unified classification of blazars. Monthly Notices of the Royal Astronomical Society, 2019, 486, 3465-3472.	4.4	9
47	Super-Chandrasekhar limiting mass white dwarfs as emergent phenomena of noncommutative squashed fuzzy spheres. International Journal of Modern Physics D, 2021, 30, .	2.1	9
48	A PURE HYDRODYNAMIC INSTABILITY IN SHEAR FLOWS AND ITS APPLICATION TO ASTROPHYSICAL ACCRETION DISKS. Astrophysical Journal, 2016, 830, 86.	4.5	8
49	Significantly super-Chandrasekhar mass-limit of white dwarfs in noncommutative geometry. International Journal of Modern Physics D, 2021, 30, 2150034.	2.1	8
50	HYDROMAGNETICS OF ADVECTIVE ACCRETION FLOWS AROUND BLACK HOLES: REMOVAL OF ANGULAR MOMENTUM BY LARGE-SCALE MAGNETIC STRESSES. Astrophysical Journal, 2015, 807, 43.	4.5	7
51	Gravity-Induced Geometric Phases and Entanglement in Spinors and Neutrinos: Gravitational Zeeman Effect. Universe, 2020, 6, 160.	2.5	7
52	Evolution of Highly Magnetic White Dwarfs by Field Decay and Cooling: Theory and Simulations. Astrophysical Journal, 2022, 925, 133.	4.5	7
53	Anisotropic Magnetized White Dwarfs: Unifying Under- and Overluminous Peculiar and Standard Type Ia Supernovae. Astrophysical Journal, 2022, 926, 66.	4.5	7
54	Exploring non-normality in magnetohydrodynamic rotating shear flows: Application to astrophysical accretion disks. Physical Review Fluids, 2016, 1, .	2.5	6

#	Article	IF	CITATIONS
55	Neutrino—antineutrino asymmetry around rotating black holes. Pramana - Journal of Physics, 2004, 62, 775-778.	1.8	5
56	Resolving dichotomy in compact objects through continuous gravitational waves observation. Monthly Notices of the Royal Astronomical Society, 2021, 508, 842-851.	4.4	4
57	Hydrodynamical instability with noise in the Keplerian accretion discs: modified Landau equation. Monthly Notices of the Royal Astronomical Society, 2020, 496, 4191-4208.	4.4	3
58	Modified virial theorem for highly magnetized white dwarfs. Monthly Notices of the Royal Astronomical Society, 2020, 500, 763-771.	4.4	3
59	Origin of hydrodynamic instability from noise: From laboratory flow to accretion disk. Physical Review Fluids, 2021, 6, .	2.5	3
60	Relativistic Landau quantization in non-uniform magnetic field and its applications to white dwarfs and quantum information. SciPost Physics, 2021, 11, .	4.9	3
61	Correlating non-linear properties with spectral states of RXTE data: possible observational evidences for four different accretion modes around compact objects. Monthly Notices of the Royal Astronomical Society, 2018, 476, 1581-1595.	4.4	2
62	Nucleosynthesis in advective accretion disc and outflow: possible explanation for overabundances in winds from X-ray binaries. Monthly Notices of the Royal Astronomical Society, 2019, 486, 1641-1651.	4.4	2
63	Role of magnetically dominated disc-outflow symbiosis on bright hard-state black hole sources: ultra-luminous X-ray sources to quasars. Monthly Notices of the Royal Astronomical Society, 2020, 495, 350-364.	4.4	2
64	Geometric phase for Dirac Hamiltonian under gravitational fields in the nonrelativistic regime. International Journal of Modern Physics D, 0, , 2150090.	2.1	2
65	Spinning Black Holes, Spinning Flows and Spinors. Thirty Years of Astronomical Discovery With UKIRT, 2018, , 3-15.	0.3	2
66	Chaotic behavior of micro quasar GRS 1915+105. AIP Conference Proceedings, 2004, , .	0.4	1
67	Continuous gravitational waves from magnetized white dwarfs. Proceedings of the International Astronomical Union, 2019, 15, 79-83.	0.0	1
68	Correlating the non-linear time series and spectral properties of IGR J17091–3624: is it similar to GRS 1915+105?. Monthly Notices of the Royal Astronomical Society, 2020, 492, 4033-4042.	4.4	1
69	Forced Linear Shear Flows with Rotation: Rotating Couette–Poiseuille Flow, Its Stability, and Astrophysical Implications. Astrophysical Journal, 2021, 922, 161.	4.5	1
70	Angular momentum transport and thermal stabilization of optically thin, advective accretion flows through large-scale magnetic fields. Monthly Notices of the Royal Astronomical Society, 0, , .	4.4	1
71	Editorial for the Special Issue "Accretion Disks, Jets, Gamma-Ray Bursts and Related Gravitational Waves― Universe, 2020, 6, 242.	2.5	0
72	NEUTRINO ASYMMETRY IN PRESENCE OF GRAVITATIONAL INTERACTION. , 2006, , .		0

#	Article	IF	CITATIONS
73	STABILITY OF ACCRETION DISK AROUND ROTATING BLACK HOLES. , 2006, , .		0
74	SCALAR AND SPINOR PERTURBATION TO THE MOST GENERALISED KERR-NUT SPACE-TIME. , 2006, , .		0
75	THEORETICAL DESCRIPTION OF KHZ QPOS IN ACCRETING LMXB SYSTEMS. , 2006, , .		0
76	The competition between the hydrodynamic instability from noise and magnetorotational instability in the Keplerian disks. AIP Advances, 2022, 12, 055228.	1.3	0