Sandrine S Bertrand

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3842182/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Impact of acute and chronic nicotine administration on midbrain dopaminergic neuron activity and related behaviours in TRPV1 knockâ€out juvenile mice. European Journal of Neuroscience, 2022, 55, 697-713.	1.2	3
2	Increased surface P2X4 receptors by mutant SOD1 proteins contribute to ALS pathogenesis in SOD1-G93A mice. Cellular and Molecular Life Sciences, 2022, 79, .	2.4	8
3	Increased surface P2X4 receptor regulates anxiety and memory in P2X4 internalization-defective knock-in mice. Molecular Psychiatry, 2021, 26, 629-644.	4.1	32
4	Acetylcholine and spinal locomotor networks: The insider. Physiological Reports, 2021, 9, e14736.	0.7	10
5	Developmentally Regulated Modulation of Lumbar Motoneurons by Metabotropic Glutamate Receptors: A Cellular and Behavioral Analysis in Newborn Mice. Frontiers in Cellular Neuroscience, 2021, 15, 770250.	1.8	Ο
6	Locomotion and dynamic posture: neuro-evolutionary basis of bipedal gait. Neurophysiologie Clinique, 2020, 50, 467-477.	1.0	10
7	Activity-dependent synaptic dynamics in motor circuits of the spinal cord. Current Opinion in Physiology, 2019, 8, 44-49.	0.9	3
8	3-D motion capture for long-term tracking of spontaneous locomotor behaviors and circadian sleep/wake rhythms in mouse. Journal of Neuroscience Methods, 2018, 295, 51-57.	1.3	13
9	Cholinergic-mediated coordination of rhythmic sympathetic and motor activities in the newborn rat spinal cord. PLoS Biology, 2018, 16, e2005460.	2.6	8
10	A new class of radiopeptides for PET imaging of neuromedin-B receptor: 68Ga-ranatensin analogs. MedChemComm, 2016, 7, 1217-1223.	3.5	1
11	Distinct and developmentally regulated activity-dependent plasticity at descending glutamatergic synapses on flexor and extensor motoneurons. Scientific Reports, 2016, 6, 28522.	1.6	2
12	Age-Related Changes in Pre- and Postsynaptic Partners of the Cholinergic C-Boutons in Wild-Type and SOD1G93A Lumbar Motoneurons. PLoS ONE, 2015, 10, e0135525.	1.1	33
13	Origin of Thoracic Spinal Network Activity during Locomotor-Like Activity in the Neonatal Rat. Journal of Neuroscience, 2015, 35, 6117-6130.	1.7	20
14	Monoaminergic control of spinal locomotor networks in SOD1G93A newborn mice. Frontiers in Neural Circuits, 2014, 8, 77.	1.4	14
15	Multiple monoaminergic modulation of posturo-locomotor network activity in the newborn rat spinal cord. Frontiers in Neural Circuits, 2014, 8, 99.	1.4	11
16	Activity-dependent Synaptic Plasticity and Metaplasticity in Spinal Motor Networks. Current Pharmaceutical Design, 2013, 19, 4498-4508.	0.9	14
17	Cholinergic partition cells and lamina X neurons induce a muscarinic-dependent short-term potentiation of commissural glutamatergic inputs in lumbar motoneurons. Frontiers in Neural Circuits, 2011, 5, 15.	1.4	30
18	Noradrenergic modulation of intrinsic and synaptic properties of lumbar motoneurons in the neonatal rat spinal cord. Frontiers in Neural Circuits, 2010, 4, 4.	1.4	28

SANDRINE S BERTRAND

#	Article	IF	CITATIONS
19	Knockdown of L Calcium Channel Subtypes: Differential Effects in Neuropathic Pain. Journal of Neuroscience, 2010, 30, 1073-1085.	1.7	97
20	Expression of GABAA receptor α3-, Î,-, and ε-subunit mRNAs during rat CNS development and immunolocalization of the ε subunit in developing postnatal spinal cord. Neuroscience, 2009, 160, 85-96.	1.1	14
21	Interplay between neuromodulatorâ€induced switching of shortâ€term plasticity at sensorimotor synapses in the neonatal rat spinal cord. Journal of Physiology, 2008, 586, 1903-1920.	1.3	23
22	Plateau potentials and membrane oscillations in parasympathetic preganglionic neurones and intermediolateral neurones in the rat lumbosacral spinal cord. Journal of Physiology, 2005, 563, 583-596.	1.3	23
23	Peptidergic neuromodulation of the lumbar locomotor network in the neonatal rat spinal cord. Peptides, 2005, 26, 277-286.	1.2	16
24	Different actions of Gabapentin and baclofen in hippocampus from weaver mice. Hippocampus, 2003, 13, 525-528.	0.9	14
25	Gabapentin actions on Kir3 currents and N-type Ca2+ channels via GABAB receptors in hippocampal pyramidal cells. Synapse, 2003, 50, 95-109.	0.6	49
26	GABA B Receptor―and Metabotropic Glutamate Receptorâ€Dependent Cooperative Longâ€Term Potentiation of Rat Hippocampal GABA A Synaptic Transmission. Journal of Physiology, 2003, 553, 155-167.	1.3	75
27	Dynamic balance of metabotropic inputs causes dorsal horn neurons to switch functional states. Nature Neuroscience, 2003, 6, 274-281.	7.1	129
28	The respective contribution of lumbar segments to the generation of locomotion in the isolated spinal cord of newborn rat. European Journal of Neuroscience, 2002, 16, 1741-1750.	1.2	39
29	Corrigendum to "N- and P/Q-type Ca2+ channels are involved in neurotransmitter release but not in synaptic depression in the spinal cord of the neonatal rat―[Neurosci. Lett. 295 (2000) 29–32]. Neuroscience Letters, 2001, 302, 161.	1.0	0
30	Î ³ -Aminobutyric Acid Type B Receptors with Specific Heterodimer Composition and Postsynaptic Actions in Hippocampal Neurons Are Targets of Anticonvulsant Gabapentin Action. Molecular Pharmacology, 2001, 59, 144-152.	1.0	141
31	Unitary synaptic currents between lacunosumâ€moleculare interneurones and pyramidal cells in rat hippocampus. Journal of Physiology, 2001, 532, 369-384.	1.3	31
32	Coupling between lumbar and sacral motor networks in the neonatal rat spinal cord. European Journal of Neuroscience, 2000, 12, 2993-3002.	1.2	59
33	Ubiquity of motor networks in the spinal cord of vertebrates. Brain Research Bulletin, 2000, 53, 627-634.	1.4	36
34	N- and P/Q-type Ca2+ channels are involved in neurotransmitter release but not in synaptic depression in the spinal cord of the neonatal rat. Neuroscience Letters, 2000, 295, 29-32.	1.0	10
35	Presynaptic GABAergic control of the locomotor drive in the isolated spinal cord of neonatal rats. European Journal of Neuroscience, 1999, 11, 583-592.	1.2	31
36	Regulation by glycine, Mg2+ and polyamines of the N-methyl-d-aspartate-induced locomotion in the neonatal rat spinal cord in vitro. Neuroscience, 1999, 94, 1199-1206.	1.1	6

#	Article	IF	CITATIONS
37	Gabaergic Control of Spinal Locomotor Networks in the Neonatal Rat. Annals of the New York Academy of Sciences, 1998, 860, 168-180.	1.8	31
38	GABAA and GABAB Modulations of Synaptic Transmission between L1-L2 Locomotor Network and the Motoneurons in the Newborn Rat Isolated Spinal Cord. Annals of the New York Academy of Sciences, 1998, 860, 470-471.	1.8	4
39	Postinhibitory Rebound During Locomotor-Like Activity in Neonatal Rat Motoneurons In Vitro. Journal of Neurophysiology, 1998, 79, 342-351.	0.9	68