Hsi-Ya Huang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3842161/publications.pdf

Version: 2024-02-01

77 papers

3,166 citations

33 h-index 54 g-index

78 all docs

78 docs citations

times ranked

78

3560 citing authors

#	Article	IF	CITATIONS
1	Fragmented \hat{l}_{\pm} -Amylase into Microporous Metal-Organic Frameworks as Bioreactors. Materials, 2021, 14, 870.	2.9	3
2	Fast multipoint immobilization of lipase through chiral $<$ scp $>$ l $<$ /scp $>$ -proline on a MOF as a chiral bioreactor. Dalton Transactions, 2021, 50, 1866-1873.	3.3	12
3	\hat{l}^2 -secretase 1 inhibitory activity and AMP-activated protein kinase activation of <i>Callyspongia samarensis</i>	1.8	3
4	A simple approach to achieve a metastable metal oxide derived from carbonized metal–organic gels. Chemical Communications, 2019, 55, 4475-4478.	4.1	6
5	Application of mesoporous carbon-polymer monolith for the extraction of phenolic acid in food samples. Journal of Chromatography A, 2018, 1539, 12-18.	3.7	10
6	Pore Environment Control and Enhanced Performance of Enzymes Infiltrated in Covalent Organic Frameworks. Journal of the American Chemical Society, 2018, 140, 984-992.	13.7	310
7	The Cooperativity of Fe ₃ O ₄ and Metalâ€Organic Framework as Multifunctional Nanocomposites for Laser Desorption Ionization Process. Chemistry - A European Journal, 2018, 24, 9598-9605.	3.3	14
8	Monitoring the Effect of Different Metal Centers in Metal–Organic Frameworks and Their Adsorption of Aromatic Molecules using Experimental and Simulation Studies. Chemistry - A European Journal, 2018, 24, 14044-14047.	3.3	5
9	Enzyme Immobilized on Nanoporous Carbon Derived from Metal–Organic Framework: A New Support for Biodiesel Synthesis. ChemSusChem, 2017, 10, 1364-1369.	6.8	41
10	Nitrogen-doped porous carbon material derived from metal–organic gel for small biomolecular sensing. Chemical Communications, 2017, 53, 5725-5728.	4.1	26
11	Synthesis and characterization of trimetallic cobalt, zinc and nickel complexes containing amine-bis(benzotriazole phenolate) ligands: efficient catalysts for coupling of carbon dioxide with epoxides. Dalton Transactions, 2017, 46, 15399-15406.	3.3	35
12	A Simple Approach to Enhance the Water Stability of a Metalâ€Organic Framework. Chemistry - A European Journal, 2017, 23, 42-46.	3.3	45
13	Nanoporous Carbons Derived from Metalâ€Organic Frameworks as Novel Matrices for Surfaceâ€Assisted Laser Desorption/Ionization Mass Spectrometry. Small, 2016, 12, 2057-2066.	10.0	51
14	Laser Chemistry: Nanoporous Carbons Derived from Metal-Organic Frameworks as Novel Matrices for Surface-Assisted Laser Desorption/Ionization Mass Spectrometry (Small 15/2016). Small, 2016, 12, 2056-2056.	10.0	1
15	Diâ€nuclear zinc complexes containing tridentate iminoâ€benzotriazole phenolate derivatives as efficient catalysts for ringâ€opening polymerization of cyclic esters and copolymerization of phthalic anhydride with cyclohexene oxide. Journal of Polymer Science Part A, 2016, 54, 714-725.	2.3	16
16	InÂvitro angiotensin I converting enzyme inhibition by a peptide isolated from Chiropsalmus quadrigatus Haeckel (box jellyfish) venom hydrolysate. Toxicon, 2016, 119, 77-83.	1.6	20
17	Metal–Organic Framework–Polymer Composite as a Highly Efficient Sorbent for Sulfonamide Adsorption and Desorption: Effect of Coordinatively Unsaturated Metal Site and Topology. Langmuir, 2016, 32, 11465-11473.	3.5	45
18	Solid-phase microextraction of phthalate esters in water sample using different activated carbon-polymer monoliths as adsorbents. Analytica Chimica Acta, 2016, 927, 55-63.	5.4	44

#	Article	lF	CITATIONS
19	Aluminum based metal-organic framework-polymer monolith in solid-phase microextraction of penicillins in river water and milk samples. Journal of Chromatography A, 2016, 1428, 236-245.	3.7	88
20	Determination of imidazole derivatives by micellar electrokinetic chromatography combined with solid-phase microextraction using activated carbon-polymer monolith as adsorbent. Journal of Chromatography A, 2016, 1428, 336-345.	3.7	18
21	Approaches to drug delivery: Confinement of aspirin in MIL-100(Fe) and aspirin in the de novo synthesis of metal–organic frameworks. Microporous and Mesoporous Materials, 2016, 223, 254-260.	4.4	82
22	Immobilization of Protein on Nanoporous Metal-Organic Framework Materials. Comments on Inorganic Chemistry, 2015, 35, 331-349.	5.2	52
23	A poly(alkyl methacrylate-divinylbenzene-vinylbenzyl trimethylammonium chloride) monolithic column for solid-phase microextraction. Journal of Chromatography A, 2015, 1395, 32-40.	3.7	25
24	Purification of deteriorated liquid crystals by employing porous metal–organic-framework/polymer composites. Optical Materials Express, 2015, 5, 639.	3.0	7
25	A novel type of matrix for surface-assisted laser desorption–ionization mass spectrometric detection of biomolecules using metal-organic frameworks. Analytica Chimica Acta, 2015, 888, 103-109.	5.4	40
26	Lipaseâ€Supported Metal–Organic Framework Bioreactor Catalyzes Warfarin Synthesis. Chemistry - A European Journal, 2015, 21, 115-119.	3.3	108
27	Determination of amino acids by microemulsion electrokinetic chromatography laser induced fluorescence method. Electrophoresis, 2014, 35, 1751-1755.	2.4	14
28	A green and facile approach to obtain 100 nm zeolitic imidazolate framework-90 (ZIF-90) particles via leveraging viscosity effects. RSC Advances, 2014, 4, 52883-52886.	3.6	15
29	Fast Multipoint Immobilized MOF Bioreactor. Chemistry - A European Journal, 2014, 20, 8923-8928.	3.3	58
30	A Novel Hybrid Metal–Organic Framework–Polymeric Monolith for Solidâ€Phase Microextraction. Chemistry - A European Journal, 2014, 20, 3317-3321.	3.3	67
31	Metal–organic frameworks: new matrices for surface-assisted laser desorption–ionization mass spectrometry. Chemical Communications, 2013, 49, 4929.	4.1	74
32	Metal organic framework–organic polymer monolith stationary phases for capillary electrochromatography and nano-liquid chromatography. Analytica Chimica Acta, 2013, 779, 96-103.	5.4	120
33	Poly(triallyl isocyanurate–co-ethylene dimethacrylate–co-alkyl methacrylate) stationary phases in the chromatographic separation of hydrophilic solutes. Journal of Chromatography A, 2013, 1272, 65-72.	3.7	11
34	Analyses of polycyclic aromatic hydrocarbons in seafood by capillary electrochromatography–atmospheric pressure chemical ionization/mass spectrometry. Journal of Chromatography A, 2013, 1313, 132-138.	3.7	16
35	Novel trypsin–FITC@MOF bioreactor efficiently catalyzes protein digestion. Journal of Materials Chemistry B, 2013, 1, 928.	5.8	157
36	Airâ€stable copper derivatives as efficient catalysts for controlled lactide polymerization: Facile synthesis and characterization of wellâ€defined benzotriazole phenoxide copper complexes. Journal of Polymer Science Part A, 2013, 51, 3840-3849.	2.3	32

#	Article	IF	CITATIONS
37	Trypsinâ€lmmobilized Metal–Organic Framework as a Biocatalyst In Proteomics Analysis. ChemPlusChem, 2012, 77, 982-986.	2.8	143
38	Capillary electrochromatography–mass spectrometry determination of melamine and related triazine by-products using poly(divinyl benzene-alkene-vinylbenzyl trimethylammonium chloride) monolithic stationary phases. Analytica Chimica Acta, 2012, 719, 96-103.	5.4	43
39	Ionic liquids as porogens in the microwave-assisted synthesis of methacrylate monoliths for chromatographic application. Analytica Chimica Acta, 2012, 746, 123-133.	5.4	34
40	Capillary electrophoresisâ€laserâ€induced fluorescence detection of rat brain catecholamines with microwaveâ€assisted derivatization. Electrophoresis, 2012, 33, 3008-3011.	2.4	13
41	Penicillin analyses by capillary electrochromatography-mass spectrometry with different charged poly(stearyl methacrylate–divinylbenzene) monoliths as stationary phases. Talanta, 2012, 101, 71-77.	5 . 5	16
42	A rapid synthetic method for organic polymer-based monoliths in a room temperature ionic liquid medium via microwave-assisted vinylization and polymerization. Green Chemistry, 2011, 13, 296-299.	9.0	44
43	On-line concentration sample stacking coupled with water-in-oil microemulsion electrokinetic chromatography. Journal of Chromatography A, 2011, 1218, 7663-7669.	3.7	16
44	Analyses of sulfonamide antibiotics in meat samples by on-line concentration capillary electrochromatography–mass spectrometry. Journal of Chromatography A, 2011, 1218, 7640-7647.	3.7	50
45	Analyses of non-steroidal anti-inflammatory drugs by on-line concentration capillary electrochromatography using poly(stearyl methacrylate–divinylbenzene) monolithic columns. Journal of Chromatography A, 2011, 1218, 350-358.	3.7	24
46	Analyses of Non-steroidal Anti-inflammatory Drugs in Environmental Water Samples with Microemulsion Electrokinetic Chromatography. Analytical Sciences, 2010, 26, 703-707.	1.6	17
47	Poly(divinylbenzene-alkyl methacrylate) monolithic stationary phases in capillary electrochromatography. Journal of Chromatography A, 2010, 1217, 5839-5847.	3.7	19
48	Analyses of sulfonamide antibiotics by a successive anion―and cation―selective injection coupled to microemulsion electrokinetic chromatography. Electrophoresis, 2010, 31, 2260-2266.	2.4	21
49	Determination of melamine and related triazine by-products ammeline, ammelide, and cyanuric acid by micellar electrokinetic chromatography. Analytica Chimica Acta, 2010, 673, 206-211.	5.4	37
50	Analyses of synthetic antioxidants by capillary electrochromatography using poly(styrene–divinylbenzene–lauryl methacrylate) monolith. Talanta, 2010, 82, 1426-1433.	5 . 5	9
51	Analyses of sulfonamide antibiotics by CEC using poly(divinylbenzeneâ€1â€octadeceneâ€vinylbenzyl trimethyl) 1	ij <u>ĘŢ</u> Qq1 1	. 0 ₁ 784314 n
52	Sample stacking for determination of aromatic acid impurities by microemulsion electrokinetic chromatography. Analytica Chimica Acta, 2009, 632, 148-155.	5.4	19
53	Determining organic impurities in mother liquors from oxidative terephthalic acid synthesis by microemulsion electrokinetic chromatography. Journal of Chromatography A, 2009, 1216, 2560-2566.	3.7	14
54	Determination of eight penicillin antibiotics in pharmaceuticals, milk and porcine tissues by nano-liquid chromatography. Journal of Chromatography A, 2009, 1216, 7186-7194.	3.7	45

#	Article	IF	CITATIONS
55	Sample stacking for the analysis of penicillins by microemulsion electrokinetic chromatography. Electrophoresis, 2008, 29, 3905-3915.	2.4	24
56	Development of capillary electrochromatography with poly(styrene-divinylbenzene-vinylbenzenesulfonic acid) monolith as the stationary phase. Journal of Chromatography A, 2008, 1190, 263-270.	3.7	23
57	Sample stacking for the analysis of catechins by microemulsion EKC. Electrophoresis, 2007, 28, 1735-1743.	2.4	18
58	Analyses of alkaloids in different products by NACEâ€MS. Electrophoresis, 2007, 28, 4220-4226.	2.4	22
59	Analyses of tobacco alkaloids by cation-selective exhaustive injection sweeping microemulsion electrokinetic chromatography. Journal of Chromatography A, 2007, 1164, 313-319.	3.7	62
60	Anion-selective exhaustive injection-sweeping microemulsion electrokinetic chromatography. Electrophoresis, 2006, 27, 3202-3209.	2.4	38
61	CEC with monolithic poly(styrene-divinylbenzene-vinylsulfonic acid) as the stationary phase. Electrophoresis, 2006, 27, 4674-4681.	2.4	23
62	Separation of parabens in capillary electrochromatography using poly(styrene-divinylbenzene-methacrylic acid) monolithic column. Journal of Separation Science, 2006, 29, 2038-2048.	2.5	21
63	Analyses of benzophenones by capillary electrochromatography using methacrylate ester-based monolithic columns. Journal of Chromatography A, 2005, 1089, 250-257.	3.7	16
64	Comparison of microemulsion electrokinetic chromatography and micellar electrokinetic chromatography as methods for the analysis of ten benzophenones. Electrophoresis, 2005, 26, 895-902.	2.4	18
65	Determination of food colorants by microemulsion electrokinetic chromatography. Electrophoresis, 2005, 26, 867-877.	2.4	57
66	Analyses of phenolic compounds by microemulsion electrokinetic chromatography. Electrophoresis, 2005, 26, 3134-3140.	2.4	16
67	Organo-soluble polyimde (ODA-BSAA)/montmorillonite nanocomposite materials prepared by solution dispersion technique. Journal of Applied Polymer Science, 2005, 95, 1082-1090.	2.6	32
68	Comparison of microemulsion electrokinetic chromatography and micellar electrokinetic chromatography methods for the analysis of phenolic compounds. Journal of Separation Science, 2005, 28, 973-981.	2.5	31
69	Enhanced corrosion prevention effect of polysulfone-clay nanocomposite materials prepared by solution dispersion. Journal of Applied Polymer Science, 2004, 92, 631-637.	2.6	51
70	Preparation and properties of (BATB-ODPA) polyimide-clay nanocomposite materials. Journal of Applied Polymer Science, 2004, 92, 1072-1079.	2.6	43
71	Enhancement of corrosion protection effect of poly(styrene-co-acrylonitrile) by the incorporation of nanolayers of montmorillonite clay into copolymer matrix. Journal of Applied Polymer Science, 2004, 92, 2269-2277.	2.6	23
72	Thermal and optical properties of PMMA-titania hybrid materials prepared by sol-gel approach with HEMA as coupling agent. Journal of Applied Polymer Science, 2004, 94, 400-405.	2.6	51

#	Article	IF	CITATION
73	Analyses of preservatives by capillary electrochromatography using methacrylate ester-based monolithic columns. Electrophoresis, 2004, 25, 3237-3246.	2.4	27
74	Comparing micellar electrokinetic chromatography and microemulsion electrokinetic chromatography for the analysis of preservatives in pharmaceutical and cosmetic products. Journal of Chromatography A, 2003, 993, 153-164.	3.7	80
75	Analysis of food colorants by capillary electrophoresis with large-volume sample stacking. Journal of Chromatography A, 2003, 995, 29-36.	3.7	79
76	Determining eight colorants in milk beverages by capillary electrophoresis. Journal of Chromatography A, 2002, 959, 317-325.	3.7	136
77	Determination of saikosaponins by micellar electrokinetic capillary chromatography. Journal of Chromatography A, 1997, 759, 193-201.	3.7	24