Jacob F Bentzon

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3842024/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Atherosclerosis Induced by Adeno-Associated Virus Encoding Gain-of-Function PCSK9. Methods in Molecular Biology, 2022, 2419, 461-473.	0.9	4
2	New 3-Dimensional Volumetric Ultrasound Method for Accurate Quantification of Atherosclerotic PlaqueÂVolume. JACC: Cardiovascular Imaging, 2022, 15, 1124-1135.	5.3	13
3	Single-Cell Behavior in Closure of the Arterial Duct. Arteriosclerosis, Thrombosis, and Vascular Biology, 2022, , 101161ATVBAHA122317756.	2.4	0
4	Local Pressure Drives Low-Density Lipoprotein Accumulation and Coronary Atherosclerosis in Hypertensive Minipigs. Journal of the American College of Cardiology, 2021, 77, 575-589.	2.8	19
5	High-fructose feeding does not induce steatosis or non-alcoholic fatty liver disease in pigs. Scientific Reports, 2021, 11, 2807.	3.3	7
6	Reply. Journal of the American College of Cardiology, 2021, 77, 2620-2621.	2.8	0
7	The Phenotypic Responses of Vascular Smooth Muscle Cells Exposed to Mechanical Cues. Cells, 2021, 10, 2209.	4.1	27
8	Histone deacetylase 9 promotes endothelial-mesenchymal transition and an unfavorable atherosclerotic plaque phenotype. Journal of Clinical Investigation, 2021, 131, .	8.2	36
9	Fibrous Caps in Atherosclerosis Form by Notch-Dependent Mechanisms Common to Arterial Media Development. Arteriosclerosis, Thrombosis, and Vascular Biology, 2021, 41, e427-e439.	2.4	18
10	HAP-Multitag, a PET and Positive MRI Contrast Nanotracer for the Longitudinal Characterization of Vascular Calcifications in Atherosclerosis. ACS Applied Materials & Interfaces, 2021, 13, 45279-45290.	8.0	12
11	Analysis of ¹⁸ F-Sodium Fluoride Positron Emission Tomography Signal Sources in Atherosclerotic Minipigs Shows Specific Binding of ¹⁸ F-Sodium Fluoride to Plaque Calcifications. Arteriosclerosis, Thrombosis, and Vascular Biology, 2021, 41, e480-e490.	2.4	6
12	Arterial Sca1+ Vascular Stem Cells Generate De Novo Smooth Muscle for Artery Repair and Regeneration. Cell Stem Cell, 2020, 26, 81-96.e4.	11.1	98
13	Effects of castration on atherosclerosis in Yucatan minipigs with genetic hypercholesterolemia. PLoS ONE, 2020, 15, e0234131.	2.5	2
14	Low-density lipoproteins cause atherosclerotic cardiovascular disease: pathophysiological, genetic, and therapeutic insights: a consensus statement from the European Atherosclerosis Society Consensus Panel. European Heart Journal, 2020, 41, 2313-2330.	2.2	776
15	Effects of castration on atherosclerosis in Yucatan minipigs with genetic hypercholesterolemia. , 2020, 15, e0234131.		0
16	Effects of castration on atherosclerosis in Yucatan minipigs with genetic hypercholesterolemia. , 2020, 15, e0234131.		0
17	Effects of castration on atherosclerosis in Yucatan minipigs with genetic hypercholesterolemia. , 2020, 15, e0234131.		0
18	Effects of castration on atherosclerosis in Yucatan minipigs with genetic hypercholesterolemia. , 2020, 15, e0234131.		0

#	Article	IF	CITATIONS
19	18Fluorodeoxyglucose Accumulation in Arterial Tissues Determined by PETÂSignalÂAnalysis. Journal of the American College of Cardiology, 2019, 74, 1220-1232.	2.8	26
20	Increased retention of LDL from type 1 diabetic patients in atherosclerosis-prone areas of the murine arterial wall. Atherosclerosis, 2019, 286, 156-162.	0.8	9
21	Tapping Into the Strengths of Diversity Among Atherosclerotic Pigs. Arteriosclerosis, Thrombosis, and Vascular Biology, 2019, 39, 2203-2204.	2.4	1
22	Tissue volume and activity mapping using total intensity projection of PET/CT images. American Journal of Nuclear Medicine and Molecular Imaging, 2019, 9, 1-11.	1.0	2
23	Vascular Smooth Muscle–Specific Progerin Expression Accelerates Atherosclerosis and Death in a Mouse Model of Hutchinson-Gilford Progeria Syndrome. Circulation, 2018, 138, 266-282.	1.6	102
24	Lineage tracking of origin and fate of smooth muscle cells in atherosclerosis. Cardiovascular Research, 2018, 114, 492-500.	3.8	45
25	Vimentin deficiency in macrophages induces increased oxidative stress and vascular inflammation but attenuates atherosclerosis in mice. Scientific Reports, 2018, 8, 16973.	3.3	43
26	Diet-Induced Abdominal Obesity, Metabolic Changes, and Atherosclerosis in Hypercholesterolemic Minipigs. Journal of Diabetes Research, 2018, 2018, 1-12.	2.3	12
27	Plaque burden influences accurate classification of fibrous cap atheroma by in vivo optical coherence tomography in a porcine model of advanced coronary atherosclerosis. EuroIntervention, 2018, 14, 1129-1135.	3.2	5
28	Evaluation of porcine stem cell competence for somatic cell nuclear transfer and production of cloned animals. Animal Reproduction Science, 2017, 178, 40-49.	1.5	6
29	REPLY: Treatment with oxLDL antibody reduces cathepsin S expression in atherosclerosis via down-regulating ADAR1-mediated RNA editing. International Journal of Cardiology, 2017, 229, 8.	1.7	0
30	Type 1 diabetes increases retention of low-density lipoprotein in the atherosclerosis-prone area of the murine aorta. Atherosclerosis, 2017, 263, 7-14.	0.8	9
31	COMPARISON OF IN VIVO OPTICAL COHERENCE TOMOGRAPHY DERIVED PLAQUE PHENOTYPE AND BURDEN WITH HISTOLOGY IN A PORCINE MODEL OF ADVANCED CORONARY ATHEROSCLEROSIS. Journal of the American College of Cardiology, 2017, 69, 1072.	2.8	0
32	Vimentin deficiency in macrophages induces CD36-mediated inflammation. Atherosclerosis, 2017, 263, e87-e88.	0.8	1
33	Whole body and hematopoietic ADAM8 deficiency does not influence advanced atherosclerotic lesion development, despite its association with human plaque progression. Scientific Reports, 2017, 7, 11670.	3.3	13
34	Plaque Erosion. Circulation Research, 2017, 121, 8-10.	4.5	9
35	Reply to "Bioinformatics analysis in type 1 diabetes increases retention of low-density lipoprotein in the atherosclerosis-prone area of the murine aorta― Atherosclerosis, 2017, 263, 428-429.	0.8	0
36	Apolipoprotein E Deficiency Increases Remnant Lipoproteins and Accelerates Progressive Atherosclerosis, But NotÂXanthoma Formation, in Gene-Modified Minipigs. JACC Basic To Translational Science, 2017, 2, 591-600.	4.1	11

#	Article	IF	CITATIONS
37	Diverse cellular architecture of atherosclerotic plaque derives from clonal expansion of a few medial SMCs. JCI Insight, 2017, 2, .	5.0	108
38	Targeting Inflammation in Atherosclerosis â^—. Journal of the American College of Cardiology, 2016, 68, 2794-2796.	2.8	10
39	Treatment with a human recombinant monoclonal IgG antibody against oxidized LDL in atherosclerosis-prone pigs reduces cathepsin S in coronary lesions. International Journal of Cardiology, 2016, 215, 506-515.	1.7	20
40	Na + , HCO 3 Ââ^' -cotransporter NBCn1 increases pH i gradients, filopodia, and migration of smooth muscle cells and promotes arterial remodelling. Cardiovascular Research, 2016, 111, 227-239.	3.8	41
41	Prior renovascular hypertension does not predispose to atherosclerosis in mice. Atherosclerosis, 2016, 249, 157-163.	0.8	1
42	Stanniocalcin-2 overexpression reduces atherosclerosis in hypercholesterolemic mice. Atherosclerosis, 2016, 248, 36-43.	0.8	23
43	Differences in Hypercholesterolemia and Atherogenesis Induced by Common Androgen Deprivation Therapies in Male Mice. Journal of the American Heart Association, 2016, 5, .	3.7	8
44	Natural history of atherosclerosis: the first shall be the worst. EuroIntervention, 2016, 11, e1574-e1575.	3.2	0
45	Myocardial and Peripheral Ischemia Causes an Increase in Circulating Pregnancy-Associated Plasma Protein-A in Non-atherosclerotic, Non-heparinized Pigs. Journal of Cardiovascular Translational Research, 2015, 8, 528-535.	2.4	Ο
46	Diabetes with poor glycaemic control does not promote atherosclerosis in genetically modified hypercholesterolaemic minipigs. Diabetologia, 2015, 58, 1926-1936.	6.3	36
47	Inducing Persistent Flow Disturbances Accelerates Atherogenesis and Promotes Thin Cap Fibroatheroma Development in <i>D374Y</i> -PCSK9 Hypercholesterolemic Minipigs. Circulation, 2015, 132, 1003-1012.	1.6	58
48	Disturbed Laminar Blood Flow Vastly Augments Lipoprotein Retention in the Artery Wall. Arteriosclerosis, Thrombosis, and Vascular Biology, 2015, 35, 1928-1935.	2.4	23
49	Genetic Analysis of Ligation-Induced Neointima Formation in an F2 Intercross of C57BL/6 and FVB/N Inbred Mouse Strains. PLoS ONE, 2015, 10, e0121899.	2.5	4
50	Sortilin and atherosclerosis. Oncotarget, 2015, 6, 19352-19353.	1.8	4
51	Induction of Atherosclerosis in Mice and Hamsters Without Germline Genetic Engineering. Circulation Research, 2014, 114, 1684-1689.	4.5	223
52	The Hypercholesterolemia-Risk Gene SORT1 Facilitates PCSK9 Secretion. Cell Metabolism, 2014, 19, 310-318.	16.2	144
53	Mechanisms of Plaque Formation and Rupture. Circulation Research, 2014, 114, 1852-1866.	4.5	1,560
54	Cardiac magnetic resonance and electroanatomical mapping of acute and chronic atrial ablation injury: a histological validation study. European Heart Journal, 2014, 35, 1486-1495.	2.2	123

#	Article	IF	CITATIONS
55	Targeting sortilin in immune cells reduces proinflammatory cytokines and atherosclerosis. Journal of Clinical Investigation, 2014, 124, 5317-5322.	8.2	100
56	Update on acute coronary syndromes: the pathologists' view. European Heart Journal, 2013, 34, 719-728.	2.2	849
57	Relaxation of porcine retinal arterioles exposed to hypercholesterolemia inÂvivo is modified by hepatic LDL-receptor deficiency and diabetes mellitus. Experimental Eye Research, 2013, 115, 79-86.	2.6	7
58	Stabilization of atherosclerotic plaques: an update. European Heart Journal, 2013, 34, 3251-3258.	2.2	101
59	Familial Hypercholesterolemia and Atherosclerosis in Cloned Minipigs Created by DNA Transposition of a Human <i>PCSK9</i> Gain-of-Function Mutant. Science Translational Medicine, 2013, 5, 166ra1.	12.4	170
60	Atherosclerosis, Vulnerable Plaques, and Acute Coronary Syndromes. , 2013, , 530-539.		2
61	Circulating endothelial progenitor cells do not contribute to regeneration of endothelium after murine arterial injury. Cardiovascular Research, 2012, 93, 223-231.	3.8	89
62	Arterial endothelial cells: still the craftsmen of regenerated endothelium. Cardiovascular Research, 2012, 95, 281-289.	3.8	31
63	Membrane acidâ€base transporters modulate artery structure. FASEB Journal, 2012, 26, .	0.5	0
64	Stabilisation of atherosclerotic plaques. Thrombosis and Haemostasis, 2011, 106, 1-19.	3.4	139
65	Genetic Susceptibility of the Arterial Wall Is an Important Determinant of Atherosclerosis in C57BL/6 and FVB/N Mouse Strains. Arteriosclerosis, Thrombosis, and Vascular Biology, 2011, 31, 1814-1820.	2.4	10
66	Flanking Recipient Vasculature, Not Circulating Progenitor Cells, Contributes to Endothelium and Smooth Muscle in Murine Allograft Vasculopathy. Arteriosclerosis, Thrombosis, and Vascular Biology, 2011, 31, 808-813.	2.4	38
67	Pathogenesis of Stable and Acute Coronary Syndromes. , 2011, , 42-52.		3
68	Pathology of Vulnerability Caused by High-Risk (Vulnerable) Arteries and Plaques. , 2011, , 39-51.		2
69	Atherosclerotic lesions in mouse and man: is it the same disease?. Current Opinion in Lipidology, 2010, 21, 434-440.	2.7	124
70	Circulating smooth muscle progenitor cells in atherosclerosis and plaque rupture: Current perspective and methods of analysis. Vascular Pharmacology, 2010, 52, 11-20.	2.1	31
71	Response to Letters Regarding Article, "Circulating Endothelial Progenitor Cells Do Not Contribute to Plaque Endothelium in Murine Atherosclerosis― Circulation, 2010, 122, .	1.6	0
72	Circulating Endothelial Progenitor Cells Do Not Contribute to Plaque Endothelium in Murine Atherosclerosis. Circulation, 2010, 121, 898-905.	1.6	103

#	Article	IF	CITATIONS
73	From vulnerable plaque to atherothrombosis. Journal of Internal Medicine, 2008, 263, 506-516.	6.0	125
74	Demonstration of the presence of independent pre-osteoblastic and pre-adipocytic cell populations in bone marrow-derived mesenchymal stem cells. Bone, 2008, 43, 32-39.	2.9	125
75	Response to Letter Regarding Article, "Smooth Muscle Cells Healing Atherosclerotic Plaque Disruptions Are of Local, Not Blood, Origin in Apolipoprotein E Knockout Miceâ€: Circulation, 2008, 117,	1.6	0
76	Smooth Muscle Cells Healing Atherosclerotic Plaque Disruptions Are of Local, Not Blood, Origin in Apolipoprotein E Knockout Mice. Circulation, 2007, 116, 2053-2061.	1.6	116
77	Size of myocardial infarction induced by ischaemia/reperfusion is unaltered in rats with metabolic syndrome. Clinical Science, 2006, 110, 665-671.	4.3	28
78	Smooth Muscle Cells in Atherosclerosis Originate From the Local Vessel Wall and Not Circulating Progenitor Cells in ApoE Knockout Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2006, 26, 2696-2702.	2.4	217
79	Humoral Immune Response Against Defined Oxidized Low-Density Lipoprotein Antigens Reflects Structure and Disease Activity of Carotid Plaques. Arteriosclerosis, Thrombosis, and Vascular Biology, 2005, 25, 1250-1255.	2.4	29
80	Tissue distribution and engraftment of human mesenchymal stem cells immortalized by human telomerase reverse transcriptase gene. Biochemical and Biophysical Research Communications, 2005, 330, 633-640.	2.1	92
81	Chronic Renal Failure Accelerates Atherogenesis in Apolipoprotein E–Deficient Mice. Journal of the American Society of Nephrology: JASN, 2003, 14, 2466-2474.	6.1	138
82	Expansive Remodeling Is a Response of the Plaque-Related Vessel Wall in Aortic Roots of ApoE-Deficient Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2003, 23, 257-262.	2.4	37
83	Macrophages are associated with lipid-rich carotid artery plaques, echolucency on B-mode imaging, and elevated plasma lipid levels. Journal of Vascular Surgery, 2002, 35, 137-145.	1.1	122
84	Macrophages are associated with lipid-rich carotid artery plaques, echolucency on B-mode imaging, and elevated plasma lipid levels. Journal of Vascular Surgery, 2002, 35, 137-45.	1.1	107
85	Dietary Supplementation With Methionine and Homocysteine Promotes Early Atherosclerosis but Not Plaque Rupture in ApoE-Deficient Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2001, 21, 1470-1476.	2.4	190
86	Red Wine Does Not Reduce Mature Atherosclerosis in Apolipoprotein E–Deficient Mice. Circulation, 2001, 103, 1681-1687.	1.6	62