

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3841833/publications.pdf Version: 2024-02-01

DENC YU

#	Article	IF	CITATIONS
1	Co Nanoislands Rooted on Co–N–C Nanosheets as Efficient Oxygen Electrocatalyst for Zn–Air Batteries. Advanced Materials, 2019, 31, e1901666.	11.1	455
2	A Stable Bifunctional Catalyst for Rechargeable Zinc–Air Batteries: Iron–Cobalt Nanoparticles Embedded in a Nitrogenâ€Đoped 3D Carbon Matrix. Angewandte Chemie - International Edition, 2018, 57, 16166-16170.	7.2	365
3	Porous Graphitic Carbon Nanosheets Derived from Cornstalk Biomass for Advanced Supercapacitors. ChemSusChem, 2013, 6, 880-889.	3.6	257
4	Boronâ€Induced Electronicâ€Structure Reformation of CoP Nanoparticles Drives Enhanced pHâ€Universal Hydrogen Evolution. Angewandte Chemie - International Edition, 2020, 59, 4154-4160.	7.2	221
5	<i>In Situ</i> Carbon-Coated Yolk–Shell V ₂ O ₃ Microspheres for Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2015, 7, 1595-1601.	4.0	132
6	lon-exchanged route synthesis of Fe2N–N-doped graphitic nanocarbons composite as advanced oxygen reduction electrocatalyst. Chemical Communications, 2013, 49, 3022.	2.2	116
7	A Review: Enhanced Anodes of Li/Na-Ion Batteries Based on Yolk–Shell Structured Nanomaterials. Nano-Micro Letters, 2018, 10, 40.	14.4	92
8	From graphite to porous graphene-like nanosheets for high rate lithium-ion batteries. Nano Research, 2015, 8, 2998-3010.	5.8	76
9	Ni ₃ S ₂ Nanosheets in Situ Epitaxially Grown on Nanorods as High Active and Stable Homojunction Electrocatalyst for Hydrogen Evolution Reaction. ACS Sustainable Chemistry and Engineering, 2018, 6, 2474-2481.	3.2	72
10	Highâ€Efficient, Stable Electrocatalytic Hydrogen Evolution in Acid Media by Amorphous Fe <i>_x</i> P Coating Fe ₂ N Supported on Reduced Graphene Oxide. Small, 2018, 14, e1801717.	5.2	72
11	B and N isolate-doped graphitic carbon nanosheets from nitrogen-containing ion-exchanged resins for enhanced oxygen reduction. Scientific Reports, 2014, 4, 5184.	1.6	68
12	Molybdenum Disulfide Nanosheets Aligned Vertically on Carbonized Silk Fabric as Smart Textile for Wearable Pressure-Sensing and Energy Devices. ACS Applied Materials & Interfaces, 2020, 12, 11825-11832.	4.0	67
13	A Stable Bifunctional Catalyst for Rechargeable Zinc–Air Batteries: Iron–Cobalt Nanoparticles Embedded in a Nitrogenâ€Doped 3D Carbon Matrix. Angewandte Chemie, 2018, 130, 16398-16402.	1.6	64
14	The cooperation of Fe ₃ C nanoparticles with isolated single iron atoms to boost the oxygen reduction reaction for Zn–air batteries. Journal of Materials Chemistry A, 2021, 9, 6831-6840.	5.2	59
15	Cubic imidazolate frameworks-derived CoFe alloy nanoparticles-embedded N-doped graphitic carbon for discharging reaction of Zn-air battery. Science China Materials, 2020, 63, 327-338.	3.5	51
16	B,N-Doped Defective Carbon Entangled Fe ₃ C Nanoparticles as the Superior Oxygen Reduction Electrocatalyst for Zn–Air Batteries. ACS Sustainable Chemistry and Engineering, 2019, 7, 19104-19112.	3.2	48
17	A chromium nitride/carbon nitride containing graphitic carbon nanocapsule hybrid as a Pt-free electrocatalyst for oxygen reduction. Chemical Communications, 2015, 51, 12399-12402.	2.2	46
18	A novel Fe ₃ C/graphitic carbon composite with electromagnetic wave absorption properties in the C-band. RSC Advances, 2015, 5, 60135-60140.	1.7	45

Peng Yu

#	Article	IF	CITATIONS
19	Threeâ€Dimensional Fe ₂ N@C Microspheres Grown on Reduced Graphite Oxide for Lithiumâ€lon Batteries and the Li Storage Mechanism. Chemistry - A European Journal, 2015, 21, 3249-3256.	1.7	42
20	Urchin-like V ₂ O ₃ /C Hollow Nanosphere Hybrid for High-Capacity and Long-Cycle-Life Lithium Storage. ACS Sustainable Chemistry and Engineering, 2017, 5, 11238-11245.	3.2	39
21	Heterophase engineering of SnO2/Sn3O4 drives enhanced carbon dioxide electrocatalytic reduction to formic acid. Science China Materials, 2020, 63, 2314-2324.	3.5	36
22	2D quasi-ordered nitrogen-enriched porous carbon nanohybrids for high energy density supercapacitors. Nanoscale, 2016, 8, 10166-10176.	2.8	34
23	N-doped carbon-coated Co3O4 nanosheet array/carbon cloth for stable rechargeable Zn-air batteries. Science China Materials, 2019, 62, 624-632.	3.5	34
24	Hierarchical porous NiCo ₂ O ₄ nanosheet arrays directly grown on carbon cloth with superior lithium storage performance. Dalton Transactions, 2017, 46, 4717-4723.	1.6	32
25	2 D Hybrid of Ni‣DH Chips on Carbon Nanosheets as Cathode of Zinc–Air Battery for Electrocatalytic Conversion of O ₂ into H ₂ O ₂ . ChemSusChem, 2020, 13, 1496-1503.	3.6	30
26	3D Network nanostructured NiCoP nanosheets supported on N-doped carbon coated Ni foam as a highly active bifunctional electrocatalyst for hydrogen and oxygen evolution reactions. Frontiers of Chemical Science and Engineering, 2018, 12, 417-424.	2.3	28
27	Ideal design of air electrode—A step closer toward robust rechargeable Zn–air battery. APL Materials, 2020, 8, .	2.2	27
28	Super-stable non-woven fabric-based membrane as a high-efficiency oil/water separator in full pH range. RSC Advances, 2017, 7, 19764-19770.	1.7	25
29	Graphene-like nanocomposites anchored by Ni ₃ S ₂ slices for Li-ion storage. RSC Advances, 2016, 6, 48083-48088.	1.7	23
30	In–situ Molten Salt Template Strategy for Hierarchical 3D Porous Carbon from Palm Shells as Advanced Electrochemical Supercapacitors. ChemistrySelect, 2016, 1, 2167-2173.	0.7	23
31	Self-supported Ni6MnO8 3D mesoporous nanosheet arrays with ultrahigh lithium storage properties and conversion mechanism by in-situ XAFS. Nano Research, 2017, 10, 263-275.	5.8	23
32	Boronâ€Induced Electronicâ€Structure Reformation of CoP Nanoparticles Drives Enhanced pHâ€Universal Hydrogen Evolution. Angewandte Chemie, 2020, 132, 4183-4189.	1.6	23
33	Atomically Dispersed Fe–N ₃ C Sites Induce Asymmetric Electron Structures to Afford Superior Oxygen Reduction Activity. Small, 2022, 18, e2201255.	5.2	23
34	Silica direct evaporation: a size-controlled approach to SiC/carbon nanosheet composites as Pt catalyst supports for superior methanol electrooxidation. Journal of Materials Chemistry A, 2015, 3, 24139-24147.	5.2	20
35	A "competitive occupancy―strategy toward Co–N ₄ single-atom catalysts embedded in 2D TiN/rCO sheets for highly efficient and stable aromatic nitroreduction. Journal of Materials Chemistry A, 2020, 8, 4807-4815.	5.2	19
36	CoWO4 nanopaticles wrapped by RGO as high capacity anode material for lithium ion batteries. Rare Metals, 2017, 36, 411-417.	3.6	17

Peng Yu

#	Article	IF	CITATIONS
37	Fe3C coupled with Fe-Nx supported on N-doped carbon as oxygen reduction catalyst for assembling Zn-air battery to drive water splitting. Chinese Chemical Letters, 2022, 33, 3903-3908.	4.8	16
38	A Platinum–Vanadium Nitride/Porous Graphitic Nanocarbon Composite as an Excellent Catalyst for the Oxygen Reduction Reaction. ChemElectroChem, 2015, 2, 1813-1820.	1.7	14
39	Constructing B and N separately co-doped carbon nanocapsules-wrapped Fe/Fe ₃ C for oxygen reduction reaction with high current density. Physical Chemistry Chemical Physics, 2016, 18, 26572-26578.	1.3	12
40	Ferric phosphide carbon nanocomposites emerging as highly active electrocatalysts for the hydrogen evolution reaction. Dalton Transactions, 2018, 47, 16011-16018.	1.6	12
41	3 D Interlayer Nanohybrids Composed of Sulfamicâ€Acidâ€Doped PEdot Grown on Expanded Graphite for Highâ€Performance Supercapacitors. ChemPlusChem, 2016, 81, 242-250.	1.3	10
42	Hydrothermal for Synthesis of CoO Nanoparticles/Graphene Composite as Li-ion Battery Anodes. Acta Chimica Sinica, 2017, 75, 231.	0.5	6
43	Ni–Co Bimetallic Sulfide Coated with Reduced Graphene Oxide and Carbon for High-Capacitance Supercapacitor. Journal of Nanoscience and Nanotechnology, 2017, 17, 4091-4098.	0.9	5