Ellen Sidransky

List of Publications by Citations

Source: https://exaly.com/author-pdf/3841709/ellen-sidransky-publications-by-citations.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

 180
 10,151
 54
 98

 papers
 citations
 h-index
 g-index

 189
 11,892
 5.8
 6.27

 ext. papers
 ext. citations
 avg, IF
 L-index

#	Paper	IF	Citations
180	Gaucher disease glucocerebrosidase and Esynuclein form a bidirectional pathogenic loop in synucleinopathies. <i>Cell</i> , 2011 , 146, 37-52	56.2	895
179	Gaucher disease: mutation and polymorphism spectrum in the glucocerebrosidase gene (GBA). <i>Human Mutation</i> , 2008 , 29, 567-83	4.7	426
178	Neuropathology provides clues to the pathophysiology of Gaucher disease. <i>Molecular Genetics and Metabolism</i> , 2004 , 82, 192-207	3.7	360
177	The link between the GBA gene and parkinsonism. <i>Lancet Neurology, The</i> , 2012 , 11, 986-98	24.1	353
176	Reduced glucocerebrosidase is associated with increased Esynuclein in sporadic Parkinson's disease. <i>Brain</i> , 2014 , 137, 834-48	11.2	311
175	Glucocerebrosidase mutations in subjects with parkinsonism. <i>Molecular Genetics and Metabolism</i> , 2004 , 81, 70-3	3.7	305
174	Gaucher disease: complexity in a "simple" disorder. <i>Molecular Genetics and Metabolism</i> , 2004 , 83, 6-15	3.7	295
173	A multicenter study of glucocerebrosidase mutations in dementia with Lewy bodies. <i>JAMA Neurology</i> , 2013 , 70, 727-35	17.2	285
172	Analysis and classification of 304 mutant alleles in patients with type 1 and type 3 Gaucher disease. <i>American Journal of Human Genetics</i> , 2000 , 66, 1777-86	11	243
171	Excessive burden of lysosomal storage disorder gene variants in Parkinson's disease. <i>Brain</i> , 2017 , 140, 3191-3203	11.2	209
170	Glucocerebrosidase gene mutations in patients with type 2 Gaucher disease. <i>Human Mutation</i> , 2000 , 15, 181-8	4.7	179
169	Epidermal sphingomyelins are precursors for selected stratum corneum ceramides. <i>Journal of Lipid Research</i> , 2000 , 41, 2071-2082	6.3	167
168	Activation of EGlucocerebrosidase Reduces Pathological Esynuclein and Restores Lysosomal Function in Parkinson's Patient Midbrain Neurons. <i>Journal of Neuroscience</i> , 2016 , 36, 7693-706	6.6	158
167	Glucocerebrosidase is present in Esynuclein inclusions in Lewy body disorders. <i>Acta Neuropathologica</i> , 2010 , 120, 641-9	14.3	151
166	A New Glucocerebrosidase Chaperone Reduces Esynuclein and Glycolipid Levels in iPSC-Derived Dopaminergic Neurons from Patients with Gaucher Disease and Parkinsonism. <i>Journal of Neuroscience</i> , 2016 , 36, 7441-52	6.6	150
165	Glucocerebrosidase gene mutations: a risk factor for Lewy body disorders. <i>Archives of Neurology</i> , 2008 , 65, 379-82		146
164	The spectrum of parkinsonian manifestations associated with glucocerebrosidase mutations. <i>Archives of Neurology</i> , 2008 , 65, 1353-7		142

(2003-2002)

163	Glucosylsphingosine accumulation in tissues from patients with Gaucher disease: correlation with phenotype and genotype. <i>Molecular Genetics and Metabolism</i> , 2002 , 76, 262-70	3.7	135
162	Alpha-synuclein interacts with Glucocerebrosidase providing a molecular link between Parkinson and Gaucher diseases. <i>Journal of Biological Chemistry</i> , 2011 , 286, 28080-8	5.4	130
161	Three classes of glucocerebrosidase inhibitors identified by quantitative high-throughput screening are chaperone leads for Gaucher disease. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2007 , 104, 13192-7	11.5	130
160	Exploring the link between glucocerebrosidase mutations and parkinsonism. <i>Trends in Molecular Medicine</i> , 2011 , 17, 485-93	11.5	126
159	Enhanced calcium release in the acute neuronopathic form of Gaucher disease. <i>Neurobiology of Disease</i> , 2005 , 18, 83-8	7.5	125
158	Gaucher disease in the neonate: a distinct Gaucher phenotype is analogous to a mouse model created by targeted disruption of the glucocerebrosidase gene. <i>Pediatric Research</i> , 1992 , 32, 494-8	3.2	124
157	Lysosomal storage disorders in the newborn. <i>Pediatrics</i> , 2009 , 123, 1191-207	7.4	121
156	Glucocerebrosidase is shaking up the synucleinopathies. <i>Brain</i> , 2014 , 137, 1304-22	11.2	113
155	The role of glucocerebrosidase mutations in Parkinson disease and Lewy body disorders. <i>Current Neurology and Neuroscience Reports</i> , 2010 , 10, 190-8	6.6	112
154	Phenotypic continuum in neuronopathic Gaucher disease: an intermediate phenotype between type 2 and type 3. <i>Journal of Pediatrics</i> , 2003 , 143, 273-6	3.6	112
153	Atp13a2-deficient mice exhibit neuronal ceroid lipofuscinosis, limited Esynuclein accumulation and age-dependent sensorimotor deficits. <i>Human Molecular Genetics</i> , 2013 , 22, 2067-82	5.6	104
152	The Complicated Relationship between Gaucher Disease and Parkinsonism: Insights from a Rare Disease. <i>Neuron</i> , 2017 , 93, 737-746	13.9	97
151	Glucocerebrosidase and its relevance to Parkinson disease. <i>Molecular Neurodegeneration</i> , 2019 , 14, 36	19	96
150	Discovery, structure-activity relationship, and biological evaluation of noninhibitory small molecule chaperones of glucocerebrosidase. <i>Journal of Medicinal Chemistry</i> , 2012 , 55, 5734-48	8.3	93
149	Glucocerebrosidase mutations in Chinese subjects from Taiwan with sporadic Parkinson disease. <i>Molecular Genetics and Metabolism</i> , 2007 , 91, 195-200	3.7	93
148	Induced pluripotent stem cell model recapitulates pathologic hallmarks of Gaucher disease. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 18054-9	11.5	87
147	Lysosomal storage and impaired autophagy lead to inflammasome activation in Gaucher macrophages. <i>Aging Cell</i> , 2016 , 15, 77-88	9.9	87
146	Myoclonic epilepsy in Gaucher disease: genotype-phenotype insights from a rare patient subgroup. <i>Pediatric Research</i> , 2003 , 53, 387-95	3.2	85

145	The role of saposin C in Gaucher disease. <i>Molecular Genetics and Metabolism</i> , 2012 , 106, 257-63	3.7	83
144	Identification of three additional genes contiguous to the glucocerebrosidase locus on chromosome 1q21: implications for Gaucher disease. <i>Genome Research</i> , 1997 , 7, 1020-6	9.7	82
143	The glucocerebrosidase gene and Parkinson's disease in Ashkenazi Jews. <i>New England Journal of Medicine</i> , 2005 , 352, 728-31; author reply 728-31	59.2	82
142	Glucosylsphingosine accumulation in mice and patients with type 2 Gaucher disease begins early in gestation. <i>Pediatric Research</i> , 2000 , 48, 233-7	3.2	81
141	Reciprocal and nonreciprocal recombination at the glucocerebrosidase gene region: implications for complexity in Gaucher disease. <i>American Journal of Human Genetics</i> , 2003 , 72, 519-34	11	80
140	Membrane-bound Esynuclein interacts with glucocerebrosidase and inhibits enzyme activity. <i>Molecular Genetics and Metabolism</i> , 2013 , 108, 56-64	3.7	79
139	Complete screening for glucocerebrosidase mutations in Parkinson disease patients from Portugal. <i>Neurobiology of Aging</i> , 2009 , 30, 1515-7	5.6	79
138	Gaucher disease: Progress and ongoing challenges. <i>Molecular Genetics and Metabolism</i> , 2017 , 120, 8-21	3.7	72
137	Macrophage models of Gaucher disease for evaluating disease pathogenesis and candidate drugs. <i>Science Translational Medicine</i> , 2014 , 6, 240ra73	17.5	72
136	Gaucher disease: insights from a rare Mendelian disorder. <i>Discovery Medicine</i> , 2012 , 14, 273-81	2.5	72
135	The clinical management of Type 2 Gaucher disease. <i>Molecular Genetics and Metabolism</i> , 2015 , 114, 110	-3 <i>2</i> /2	71
134	Epidermal abnormalities may distinguish type 2 from type 1 and type 3 of Gaucher disease. <i>Pediatric Research</i> , 1996 , 39, 134-41	3.2	70
133	Mucolipidosis type IV: an update. <i>Molecular Genetics and Metabolism</i> , 2011 , 104, 206-13	3.7	67
132	The neurobiology of glucocerebrosidase-associated parkinsonism: a positron emission tomography study of dopamine synthesis and regional cerebral blood flow. <i>Brain</i> , 2012 , 135, 2440-8	11.2	67
131	Gaucher disease and parkinsonism. Molecular Genetics and Metabolism, 2005, 84, 302-4	3.7	66
130	Childhood-onset schizophrenia/autistic disorder and t(1;7) reciprocal translocation: identification of a BAC contig spanning the translocation breakpoint at 7q21. <i>American Journal of Medical Genetics Part A</i> , 2000 , 96, 749-53		62
129	The association between mutations in the lysosomal protein glucocerebrosidase and parkinsonism. <i>Movement Disorders</i> , 2009 , 24, 1571-8	7	61
128	Glucocerebrosidase mutations are also found in subjects with early-onset parkinsonism from Venezuela. <i>Movement Disorders</i> , 2006 , 21, 282-3	7	58

127	Aggregation of Bynuclein in brain samples from subjects with glucocerebrosidase mutations. <i>Molecular Genetics and Metabolism</i> , 2011 , 104, 185-8	3.7	57	
126	Evaluation of quinazoline analogues as glucocerebrosidase inhibitors with chaperone activity. <i>Journal of Medicinal Chemistry</i> , 2011 , 54, 1033-58	8.3	54	
125	A mutation in SCARB2 is a modifier in Gaucher disease. <i>Human Mutation</i> , 2011 , 32, 1232-8	4.7	52	
124	DNA mutational analysis of type 1 and type 3 Gaucher patients: how well do mutations predict phenotype?. <i>Human Mutation</i> , 1994 , 3, 25-8	4.7	52	
123	High throughput screening for small molecule therapy for Gaucher disease using patient tissue as the source of mutant glucocerebrosidase. <i>PLoS ONE</i> , 2012 , 7, e29861	3.7	51	
122	GBA p.T369M substitution in Parkinson disease: Polymorphism or association? A meta-analysis. <i>Neurology: Genetics</i> , 2016 , 2, e104	3.8	51	
121	DNA mutation analysis of Gaucher patients. American Journal of Medical Genetics Part A, 1992, 42, 331-	6	50	
120	Gaucher disease associated with parkinsonism: four further case reports 2003 , 116A, 348-51		47	
119	Lysosomal integral membrane protein-2: a new player in lysosome-related pathology. <i>Molecular Genetics and Metabolism</i> , 2014 , 111, 84-91	3.7	46	
118	Mutations in GBA are associated with familial Parkinson disease susceptibility and age at onset. <i>Neurology</i> , 2009 , 73, 1424-5, author reply 1425-6	6.5	45	
117	Chromosome 22q11.2 interstitial deletions among childhood-onset schizophrenics and Ehultidimensionally impaired 1998 , 81, 41-43		44	
116	Progress and potential of non-inhibitory small molecule chaperones for the treatment of Gaucher disease and its implications for Parkinson disease. <i>Expert Review of Proteomics</i> , 2016 , 13, 471-9	4.2	42	
115	Recent advances in the diagnosis and management of Gaucher disease. <i>Expert Review of Endocrinology and Metabolism</i> , 2018 , 13, 107-118	4.1	41	
114	The Spectrum of Neurological Manifestations Associated with Gaucher Disease. <i>Diseases (Basel, Switzerland)</i> , 2017 , 5,	4.4	41	
113	Genotypic heterogeneity and phenotypic variation among patients with type 2 Gaucher's disease. <i>Pediatric Research</i> , 1998 , 43, 571-8	3.2	39	
112	Type 2 gaucher disease: an expanding phenotype. <i>Molecular Genetics and Metabolism</i> , 1999 , 68, 209-19	3.7	38	
111	Structural features of membrane-bound glucocerebrosidase and Esynuclein probed by neutron reflectometry and fluorescence spectroscopy. <i>Journal of Biological Chemistry</i> , 2015 , 290, 744-54	5.4	37	
110	Prenatal lethality of a homozygous null mutation in the human glucocerebrosidase gene. <i>American Journal of Medical Genetics Part A</i> , 1997 , 73, 41-7		35	

109	Cognitive outcome in treated patients with chronic neuronopathic Gaucher disease. <i>Journal of Pediatrics</i> , 2008 , 153, 89-94	3.6	35
108	Is the perinatal lethal form of Gaucher disease more common than classic type 2 Gaucher disease?. <i>European Journal of Human Genetics</i> , 1999 , 7, 505-9	5.3	35
107	Perinatal lethal Gaucher disease: a distinct phenotype along the neuronopathic continuum. <i>Fetal and Pediatric Pathology</i> , 2005 , 24, 205-22	1.7	34
106	Congenital ichthyosis preceding neurologic symptoms in two sibs with type 2 Gaucher disease. <i>American Journal of Medical Genetics Part A</i> , 1995 , 59, 356-8		33
105	Saposin C protects glucocerebrosidase against Esynuclein inhibition. <i>Biochemistry</i> , 2013 , 52, 7161-3	3.2	32
104	Fabry disease - current treatment and new drug development. Current Chemical Genomics, 2010 , 4, 50-6		32
103	A characterization of Gaucher iPS-derived astrocytes: Potential implications for Parkinson's disease. Neurobiology of Disease, 2020 , 134, 104647	7.5	32
102	Optimization and validation of two miniaturized glucocerebrosidase enzyme assays for high throughput screening. <i>Combinatorial Chemistry and High Throughput Screening</i> , 2008 , 11, 817-24	1.3	31
101	GBA1-associated parkinsonism: new insights and therapeutic opportunities. <i>Current Opinion in Neurology</i> , 2019 , 32, 589-596	7.1	31
100	Genome sequencing analysis identifies new loci associated with Lewy body dementia and provides insights into its genetic architecture. <i>Nature Genetics</i> , 2021 , 53, 294-303	36.3	31
99	Clinical Heterogeneity Among Patients With Gaucher's Disease. <i>JAMA - Journal of the American Medical Association</i> , 1993 , 269, 1154	27.4	30
98	Exploring genetic modifiers of Gaucher disease: The next horizon. <i>Human Mutation</i> , 2018 , 39, 1739-1757	1 4.7	28
97	The definition of neuronopathic Gaucher disease. <i>Journal of Inherited Metabolic Disease</i> , 2020 , 43, 1056-	-150459	28
96	The role of epigenetics in lysosomal storage disorders: Uncharted territory. <i>Molecular Genetics and Metabolism</i> , 2017 , 122, 10-18	3.7	26
95	Identification of miRNAs that modulate glucocerebrosidase activity in Gaucher disease cells. <i>RNA Biology</i> , 2014 , 11, 1291-300	4.8	26
94	N4-phenyl modifications of N2-(2-hydroxyl)ethyl-6-(pyrrolidin-1-yl)-1,3,5-triazine-2,4-diamines enhance glucocerebrosidase inhibition by small molecules with potential as chemical chaperones for Gaucher disease. <i>Bioorganic and Medicinal Chemistry Letters</i> , 2007 , 17, 5783-9	2.9	26
93	Skin ultrastructural findings in type 2 Gaucher disease: diagnostic implications. <i>Molecular Genetics and Metabolism</i> , 2011 , 104, 631-6	3.7	25
92	Psychiatric and behavioral manifestations of lysosomal storage disorders. <i>American Journal of Medical Genetics Part B: Neuropsychiatric Genetics</i> , 2010 , 153B, 1253-65	3.5	25

(2020-2015)

91	Deficient vesicular storage: A common theme in catecholaminergic neurodegeneration. <i>Parkinsonism and Related Disorders</i> , 2015 , 21, 1013-22	3.6	24	
90	C-terminal Bynuclein truncations are linked to cysteine cathepsin activity in Parkinson's disease. <i>Journal of Biological Chemistry</i> , 2019 , 294, 9973-9984	5.4	23	
89	A high throughput glucocerebrosidase assay using the natural substrate glucosylceramide. <i>Analytical and Bioanalytical Chemistry</i> , 2012 , 402, 731-9	4.4	23	
88	Functional and genetic characterization of the non-lysosomal glucosylceramidase 2 as a modifier for Gaucher disease. <i>Orphanet Journal of Rare Diseases</i> , 2013 , 8, 151	4.2	23	
87	Clinical course and prognosis in patients with Gaucher disease and parkinsonism. <i>Neurology: Genetics</i> , 2016 , 2, e57	3.8	23	
86	Gaucher Disease-Induced Pluripotent Stem Cells Display Decreased Erythroid Potential and Aberrant Myelopoiesis. <i>Stem Cells Translational Medicine</i> , 2015 , 4, 878-86	6.9	21	
85	Induced pluripotent stem cell models of lysosomal storage disorders. <i>DMM Disease Models and Mechanisms</i> , 2017 , 10, 691-704	4.1	20	
84	Non-iminosugar glucocerebrosidase small molecule chaperones. <i>MedChemComm</i> , 2012 , 3, 56-60	5	20	
83	Gaucher patients with oculomotor abnormalities do not have a unique genotype. <i>Clinical Genetics</i> , 1992 , 41, 1-5	4	20	
82	Cholelithiasis in patients with Gaucher disease. <i>Blood Cells, Molecules, and Diseases</i> , 2002 , 28, 21-7	2.1	20	
81	A peptide-linked recombinant glucocerebrosidase for targeted neuronal delivery: Design, production, and assessment. <i>Journal of Biotechnology</i> , 2016 , 221, 1-12	3.7	19	
80	Glucocerebrosidase haploinsufficiency in A53T Ebynuclein mice impacts disease onset and course. <i>Molecular Genetics and Metabolism</i> , 2017 , 122, 198-208	3.7	18	
79	Gaucher mutation N188S is associated with myoclonic epilepsy. <i>Human Mutation</i> , 2005 , 26, 271-3; author reply 274-5	4.7	17	
78	Apolipoprotein E alleles in childhood-onset schizophrenia 1999 , 88, 211-213		17	
77	ACE phenotyping in Gaucher disease. <i>Molecular Genetics and Metabolism</i> , 2018 , 123, 501-510	3.7	16	
76	Pathologic fractures may develop in Gaucher patients receiving enzyme replacement therapy. <i>American Journal of Hematology</i> , 1994 , 47, 247-9	7.1	15	
75	Gaucher disease and SARS-CoV-2 infection: Emerging management challenges. <i>Molecular Genetics and Metabolism</i> , 2020 , 130, 164-169	3.7	14	
74	Small Molecule Chaperones for the Treatment of Gaucher Disease and -Associated Parkinson Disease. <i>Frontiers in Cell and Developmental Biology</i> , 2020 , 8, 271	5.7	14	

73	Dissociation of glucocerebrosidase dimer in solution by its co-factor, saposin C. <i>Biochemical and Biophysical Research Communications</i> , 2015 , 457, 561-6	3.4	14
72	A germline or de novo mutation in two families with Gaucher disease: implications for recessive disorders. <i>European Journal of Human Genetics</i> , 2013 , 21, 115-7	5.3	14
71	Dosing enzyme replacement therapy for Gaucher disease: older, but are we wiser?. <i>Genetics in Medicine</i> , 2009 , 11, 90-1	8.1	14
70	A new glucocerebrosidase-deficient neuronal cell model provides a tool to probe pathophysiology and therapeutics for Gaucher disease. <i>DMM Disease Models and Mechanisms</i> , 2016 , 9, 769-78	4.1	14
69	Type 2 Gaucher disease occurs in Ashkenazi Jews but is surprisingly rare. <i>Blood Cells, Molecules, and Diseases</i> , 2009 , 43, 294-7	2.1	13
68	Therapy for Gaucher disease: don't stop thinking about tomorrow. <i>Molecular Genetics and Metabolism</i> , 2007 , 90, 122-5	3.7	13
67	Glucocerebrosidase mutations are not found in association with LRRK2 G2019S in subjects with parkinsonism. <i>Neuroscience Letters</i> , 2006 , 404, 163-5	3.3	13
66	Genotype D399N/R463C in a patient with type 3 Gaucher disease previously assigned genotype N370S/R463C. <i>Biochemical and Molecular Medicine</i> , 1996 , 57, 149-51		13
65	Glucocerebrosidase as a therapeutic target for Parkinson's disease. <i>Expert Opinion on Therapeutic Targets</i> , 2020 , 24, 287-294	6.4	12
64	Is Parkinson disease associated with lysosomal integral membrane protein type-2?: challenges in interpreting association data. <i>Molecular Genetics and Metabolism</i> , 2013 , 108, 269-71	3.7	12
63	Gene rearranagement on 1q21 introducing a duplication of the glucocerebrosidase pseudogene and a metaxin fusion gene. <i>Human Genetics</i> , 2000 , 107, 400-3	6.3	12
62	Autosomal recessive mutations in the development of Parkinson's disease. <i>Biomarkers in Medicine</i> , 2010 , 4, 713-21	2.3	11
61	Identification of recombinant alleles using quantitative real-time PCR implications for Gaucher disease. <i>Journal of Molecular Diagnostics</i> , 2011 , 13, 401-5	5.1	10
60	Life-threatening splenic hemorrhage in two patients with Gaucher disease. <i>American Journal of Hematology</i> , 2000 , 64, 140-2	7.1	10
59	Phenotypic and genotypic heterogeneity in gaucher disease: Implications for genetic counseling. Journal of Genetic Counseling, 1994 , 3, 13-22	2.5	10
58	Variation in cognitive function over time in Gaucher disease type 3. <i>Neurology</i> , 2019 , 93, e2272-e2283	6.5	10
57	In silico and functional studies of the regulation of the glucocerebrosidase gene. <i>Molecular Genetics and Metabolism</i> , 2010 , 99, 275-82	3.7	9
56	The need for appropriate genotyping strategies for glucocerebrosidase mutations in cohorts with Parkinson disease. <i>Archives of Neurology</i> , 2008 , 65, 850-1; author reply 851		9

(2013-2017)

55	Efferocytosis is impaired in Gaucher macrophages. <i>Haematologica</i> , 2017 , 102, 656-665	6.6	8
54	False-positive results using a Gaucher diagnostic kitRecTL and N370S. <i>Molecular Genetics and Metabolism</i> , 2010 , 100, 100-2	3.7	8
53	The natural history of type 2 Gaucher disease in the 21st century: A retrospective study. <i>Neurology</i> , 2020 , 95, e2119-e2130	6.5	8
52	Alleles with more than one mutation can complicate genotype/phenotype studies in Mendelian disorders: Lessons from Gaucher disease. <i>Molecular Genetics and Metabolism</i> , 2018 , 125, 1-3	3.7	8
51	Erythropoietin levels in Gaucher patients. American Journal of Hematology, 1992, 40, 153-4	7.1	7
50	Chaperoning glucocerebrosidase: a therapeutic strategy for both Gaucher disease and Parkinsonism. <i>Neural Regeneration Research</i> , 2016 , 11, 1760-1761	4.5	7
49	Can GBA1-Associated Parkinson Disease Be Modeled in the Mouse?. <i>Trends in Neurosciences</i> , 2019 , 42, 631-643	13.3	6
48	Coinheritance of Gaucher disease and Ethalassemia resulting in confusion between two inherited hematologic diseases. <i>Blood Cells, Molecules, and Diseases</i> , 2011 , 46, 88-91	2.1	6
47	Bilateral symmetrical cortical osteolytic lesions in two patients with Gaucher disease. <i>Skeletal Radiology</i> , 2011 , 40, 1611-5	2.7	6
46	Substrate reduction therapy for GBA1-associated Parkinsonism: Are we betting on the wrong mouse?. <i>Movement Disorders</i> , 2020 , 35, 228-230	7	6
45	Clinical evaluation of sibling pairs with gaucher disease discordant for parkinsonism. <i>Movement Disorders</i> , 2020 , 35, 359-365	7	6
44	Pro-cathepsin D, Prosaposin, and Progranulin: Lysosomal Networks in Parkinsonism. <i>Trends in Molecular Medicine</i> , 2020 , 26, 913-923	11.5	6
43	Ophthalmological findings in Gaucher disease. <i>Molecular Genetics and Metabolism</i> , 2019 , 127, 23-27	3.7	6
42	Diagnosing neuronopathic Gaucher disease: New considerations and challenges in assigning Gaucher phenotypes. <i>Molecular Genetics and Metabolism</i> , 2021 , 132, 49-58	3.7	6
41	Five-parameter evaluation of dysphagia: A novel prognostic scale for assessing neurological decline	3.7	5
	in Gaucher disease type 2. <i>Molecular Genetics and Metabolism</i> , 2019 , 127, 191-199	J•7	
40	The Role of Exosomes in Lysosomal Storage Disorders. <i>Biomolecules</i> , 2021 , 11,	5.9	5
40 39			

37	Type 2 Gaucher disease in an infant despite a normal maternal glucocerebrosidase gene. <i>American Journal of Medical Genetics, Part A</i> , 2017 , 173, 3211-3215	2.5	4
36	A novel alteration in metaxin 1, F202L, is associated with N370S in Gaucher disease. <i>Journal of Human Genetics</i> , 2004 , 49, 220-222	4.3	4
35	Gaucher disease: A tale of two species. <i>Mental Retardation and Developmental Disabilities Research Reviews</i> , 1995 , 1, 79-86		4
34	EEG abnormalities in patients with chronic neuronopathic Gaucher disease: A retrospective review. <i>Molecular Genetics and Metabolism</i> , 2020 , 131, 358-363	3.7	4
33	Current and emerging pharmacotherapy for Gaucher disease in pediatric populations. <i>Expert Opinion on Pharmacotherapy</i> , 2021 , 22, 1489-1503	4	4
32	Validation of anti-glucocerebrosidase antibodies for western blot analysis on protein lysates of murine and human cells. <i>Biochemical Journal</i> , 2019 , 476, 261-274	3.8	4
31	First Clinicogenetic Description of Parkinson's Disease Related to Mutation S107L. <i>Movement Disorders Clinical Practice</i> , 2019 , 6, 254-258	2.2	3
30	Longitudinal Positron Emission Tomography of Dopamine Synthesis in Subjects with GBA1 Mutations. <i>Annals of Neurology</i> , 2020 , 87, 652-657	9.4	3
29	Mutations, modifiers and epigenetics in Gaucher disease: Blurred boundaries between simple and complex disorders. <i>Molecular Genetics and Metabolism</i> , 2019 , 128, 10-13	3.7	3
28	Bilateral Femoral Osteolytic Lesions in a Patient with Type 3 Gaucher Disease. <i>Molecular Genetics and Metabolism Reports</i> , 2015 , 5, 107-109	1.8	3
27	Parkinsonism in Patients with Neuronopathic (Type 3) Gaucher Disease: A Case Series. <i>Movement Disorders Clinical Practice</i> , 2020 , 7, 834-837	2.2	3
26	Gaucher disease in the COVID-19 pandemic environment: The good, the bad and the unknown. <i>Molecular Genetics and Metabolism</i> , 2021 , 132, 213-214	3.7	3
25	Glucocerebrosidase mutations and parkinsonism: how much does the mutation matter?. <i>Journal of Xiangya Medicine</i> , 2018 , 3, 1-1	0.1	3
24	Glucocerebrosidase gene mutations in patients with type 2 Gaucher disease 2000 , 15, 181		3
23	No Evidence That Glucosylsphingosine Is a Biomarker for Parkinson's Disease: Statistical Differences Do Not Necessarily Indicate Biological Significance <i>Movement Disorders</i> , 2022 ,	7	2
22	Lysosomal dysfunction in neurodegeneration: emerging concepts and methods <i>Trends in Neurosciences</i> , 2022 ,	13.3	2
21	Applications of iPSC-derived models of Gaucher disease. <i>Annals of Translational Medicine</i> , 2015 , 3, 295	3.2	2
20	Complexity of Genotype-Phenotype Correlations in Mendelian Disorders: Lessons from Gaucher Disease. <i>Advances in Predictive, Preventive and Personalised Medicine</i> , 2015 , 69-90	0.4	2

(2021-2021)

19	Next-Generation Sequencing Analysis of : The Challenge of Detecting Complex Recombinant Alleles. <i>Frontiers in Genetics</i> , 2021 , 12, 684067	4.5	2
18	Understanding and managing parkinsonism in patients with glucocerebrosidase mutations. <i>Expert Opinion on Orphan Drugs</i> , 2015 , 3, 549-562	1.1	1
17	New macrophage models of Gaucher disease offer new tools for drug development. <i>Macrophage</i> , 2015 , 2, e712		1
16	Investigation of a dysmorphic facial phenotype in patients with Gaucher disease types 2 and 3. <i>Molecular Genetics and Metabolism</i> , 2021 , 134, 274-280	3.7	1
15	Ocular Implications of Gaucher Disease. Essentials in Ophthalmology, 2017, 413-423	0.2	1
14	White vitreous opacities in five patients with Gaucher disease type 3. <i>American Journal of Medical Genetics, Part A</i> , 2020 , 182, 808-812	2.5	1
13	Genetics provides new individualized therapeutic targets for Parkinson's disease. <i>Neural Regeneration Research</i> , 2021 , 16, 994-995	4.5	1
12	Apolipoprotein E alleles in childhood-onset schizophrenia 1999 , 88, 211		1
11	The Deleterious Duo of Neurodegeneration: Lysosomes and Mitochondria 2016 , 279-300		О
10	Lyso-IP: Uncovering Pathogenic Mechanisms of Lysosomal Dysfunction. <i>Biomolecules</i> , 2022 , 12, 616	5.9	O
9	Neuropathological Features of Gaucher Disease and Gaucher Disease with Parkinsonism. <i>International Journal of Molecular Sciences</i> , 2022 , 23, 5842	6.3	O
8	Once again, rare diseases provide a spotlight. <i>Molecular Genetics and Metabolism</i> , 2016 , 118, 1-2	3.7	
7	Studies of glucocerebrosidase provide new therapeutic targets for parkinsonism. <i>Future Neurology</i> , 2014 , 9, 407-409	1.5	
6	Relationship between Gaucher disease and parkinsonism 2013 , 62-77		
5	Gaucher disease type 2: homozygosity for the mutation F331S in two unrelated consanguineous Muslim Arab patients with Gaucher disease from the Gaza and Jenin regions. <i>Blood Cells, Molecules, and Diseases</i> , 2011 , 47, 262-3	2.1	
4	Reply to Drs. Beutler and Gelbart. American Journal of Medical Genetics Part A, 1992, 44, 390-390		
3	The Lysosomal Storage Diseases 2012 , 1357-1361		
2	Gaucher Disease and Heart Failure of Unknown Origin. American Journal of Medicine, 2021 , 134, 745-7	482.4	

Progress in generating iPSC-derived dopaminergic neurons as accurate models of neurodegenerative disease **2021**, 181-203