Chenguo Hu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3841542/publications.pdf

Version: 2024-02-01

208 papers 16,957 citations

68 h-index 123 g-index

210 all docs

210 docs citations

times ranked

210

12915 citing authors

#	Article	IF	CITATIONS
1	An Ultrarobust and Highâ€Performance Rotational Hydrodynamic Triboelectric Nanogenerator Enabled by Automatic Mode Switching and Charge Excitation. Advanced Materials, 2022, 34, e2105882.	11.1	92
2	Achieving Remarkable Charge Density via Selfâ€Polarization of Polar Highâ€ <i>k</i> Material in a Chargeâ€Excitation Triboelectric Nanogenerator. Advanced Materials, 2022, 34, e2109918.	11.1	63
3	Interface Static Friction Enabled Ultraâ€Durable and High Output Sliding Mode Triboelectric Nanogenerator. Advanced Functional Materials, 2022, 32, .	7.8	34
4	Constructing high output performance triboelectric nanogenerator via V-shape stack and self-charge excitation. Nano Energy, 2022, 96, 107068.	8.2	22
5	Anti-Overturning Fully Symmetrical Triboelectric Nanogenerator Based on an Elliptic Cylindrical Structure for All-Weather Blue Energy Harvesting. Nano-Micro Letters, 2022, 14, 124.	14.4	33
6	Deep Learning Enabled Neck Motion Detection Using a Triboelectric Nanogenerator. ACS Nano, 2022, 16, 9359-9367.	7.3	39
7	A Highâ€Performance Bidirectional Direct Current TENG by Triboelectrification of Two Dielectrics and Local Corona Discharge. Advanced Energy Materials, 2022, 12, .	10.2	43
8	Improving and Quantifying Surface Charge Density via Charge Injection Enabled by Air Breakdown. Advanced Functional Materials, 2022, 32, .	7.8	28
9	An Ultrafast Selfâ€Polarization Effect in Barium Titanate Filled Poly(Vinylidene Fluoride) Composite Film Enabled by Selfâ€Charge Excitation Triboelectric Nanogenerator. Advanced Functional Materials, 2022, 32, .	7.8	28
10	Ultrahigh Performance Triboelectric Nanogenerator Enabled by Charge Transmission in Interfacial Lubrication and Potential Decentralization Design. Research, 2022, 2022, .	2.8	22
11	Capturing Dissipation Charge in Charge Space Accumulation Area for Enhancing Output Performance of Sliding Triboelectric Nanogenerator. Advanced Energy Materials, 2022, 12, .	10.2	29
12	High-performance asymmetric Mn(OH)2//Fe2O3 supercapacitor achieved by enhancing and matching respective properties of cathode and anode materials. Nano Energy, 2021, 79, 105410.	8.2	98
13	A highly efficient triboelectric negative air ion generator. Nature Sustainability, 2021, 4, 147-153.	11.5	143
14	High-performance flexible supercapatteries enabled by binder-free two-dimensional mesoporous ultrathin nickel-ferrite nanosheets. Materials Chemistry Frontiers, 2021, 5, 3436-3447.	3.2	18
15	Wearable triboelectric sensors for biomedical monitoring and human-machine interface. IScience, 2021, 24, 102027.	1.9	125
16	Ultrahigh Electricity Generation from Low-Frequency Mechanical Energy by Efficient Energy Management. Joule, 2021, 5, 441-455.	11.7	159
17	High-performance aqueous asymmetric supercapacitor based on hierarchical wheatear-like LiNi0.5Mn1.5O4 cathode and porous Fe2O3 anode. Materials Today Physics, 2021, 17, 100337.	2.9	26
18	Miura folding based charge-excitation triboelectric nanogenerator for portable power supply. Nano Research, 2021, 14, 4204-4210.	5.8	34

#	Article	IF	CITATIONS
19	A Nonâ€Encapsulated Polymorphous Uâ€Shaped Triboelectric Nanogenerator for Multiform Hydropower Harvesting. Advanced Materials Technologies, 2021, 6, 2001199.	3.0	12
20	Advanced designs for output improvement of triboelectric nanogenerator system. Materials Today, 2021, 45, 93-119.	8.3	86
21	Bionic Ultraâ€Sensitive Selfâ€Powered Electromechanical Sensor for Muscleâ€Triggered Communication Application. Advanced Science, 2021, 8, e2101020.	5.6	41
22	A Mobile and Selfâ€Powered Microâ€Flow Pump Based on Triboelectricity Driven Electroosmosis. Advanced Materials, 2021, 33, e2102765.	11.1	48
23	High performance floating self-excited sliding triboelectric nanogenerator for micro mechanical energy harvesting. Nature Communications, 2021, 12, 4689.	5.8	186
24	Zn induced NiCo composites modified by carbon materials as a battery-type electrode material for high-performance supercapacitors. Nanotechnology, 2021, 32, 495603.	1.3	3
25	Harvesting Multidirectional Breeze Energy and Selfâ€Powered Intelligent Fire Detection Systems Based on Triboelectric Nanogenerator and Fluidâ€Dynamic Modeling. Advanced Functional Materials, 2021, 31, 2106527.	7.8	68
26	Harvesting ambient mechanical energy by multiple mode triboelectric nanogenerator with charge excitation for self-powered freight train monitoring. Nano Energy, 2021, 90, 106543.	8.2	35
27	Gradient SEI layer induced by liquid alloy electrolyte additive for high rate lithium metal battery. Nano Energy, 2021, 88, 106237.	8.2	48
28	An inverting TENG to realize the AC mode based on the coupling of triboelectrification and air-breakdown. Energy and Environmental Science, 2021, 14, 5395-5405.	15.6	67
29	Magnetic Array Assisted Triboelectric Nanogenerator Sensor for Real-Time Gesture Interaction. Nano-Micro Letters, 2021, 13, 51.	14.4	82
30	A facile strategy of in-situ anchoring of Co3O4 on N doped carbon cloth for an ultrahigh electrochemical performance. Nano Research, 2021, 14, 2410.	5.8	22
31	Ion storage mechanism of $\hat{\Gamma}$ -MnO2 as supercapacitor cathode in multi-ion aqueous electrolyte: Experimental and theoretical analysis. Applied Physics Letters, 2021, 119, 163901.	1.5	7
32	Ultra-stability high-voltage triboelectric nanogenerator designed by ternary dielectric triboelectrification with partial soft-contact and non-contact mode. Nano Energy, 2021, 90, 106585.	8.2	65
33	Enhanced Electrochemical Performance in Aluminium Doped $\hat{\Gamma}$ -MnO2 Supercapacitor Cathode: Experimental and Theoretical Investigations. Chemical Communications, 2021, , .	2.2	12
34	Giant performance improvement of triboelectric nanogenerator systems achieved by matched inductor design. Energy and Environmental Science, 2021, 14, 6627-6637.	15.6	51
35	A teeterboard-like hybrid nanogenerator for efficient harvesting of low-frequency ocean wave energy. Nano Energy, 2020, 67, 104205.	8.2	64
36	Two voltages in contact-separation triboelectric nanogenerator: From asymmetry to symmetry for maximum output. Nano Energy, 2020, 69, 104452.	8.2	83

#	Article	IF	CITATIONS
37	A fast composite-hydroxide-mediated approach for synthesis of 2D-LiCoO2 for high performance asymmetric supercapacitor. Electrochimica Acta, 2020, 331, 135426.	2.6	32
38	Boosting output performance of sliding mode triboelectric nanogenerator by charge space-accumulation effect. Nature Communications, 2020, 11, 4277.	5.8	158
39	An Ultra-Durable Windmill-Like Hybrid Nanogenerator for Steady and Efficient Harvesting of Low-Speed Wind Energy. Nano-Micro Letters, 2020, 12, 175.	14.4	68
40	Triboelectric nanogenerators based on elastic electrodes. Nanoscale, 2020, 12, 20118-20130.	2.8	32
41	Recent progresses on paperâ€based triboelectric nanogenerator for portable <scp>selfâ€powered</scp> sensing systems. EcoMat, 2020, 2, e12060.	6.8	44
42	Robust Triboelectric Nanogenerator Achieved by Centrifugal Force Induced Automatic Working Mode Transition. Advanced Energy Materials, 2020, 10, 2000886.	10.2	100
43	An activated carbon cloth anode obtained with a fast molten salt method for high-performance supercapacitors. Journal of Alloys and Compounds, 2020, 838, 155695.	2.8	19
44	Power cables for triboelectric nanogenerator networks for large-scale blue energy harvesting. Nano Energy, 2020, 75, 104975.	8.2	59
45	Quantifying contact status and the air-breakdown model of charge-excitation triboelectric nanogenerators to maximize charge density. Nature Communications, 2020, 11, 1599.	5.8	216
46	Flexible triboelectric 3D touch pad with unit subdivision structure for effective XY positioning and pressure sensing. Nano Energy, 2020, 76, 105047.	8.2	69
47	Polydirectional Microvibration Energy Collection for Self-Powered Multifunctional Systems Based on Hybridized Nanogenerators. ACS Nano, 2020, 14, 3328-3336.	7.3	85
48	Low Li ion diffusion barrier on low-crystalline FeOOH nanosheets and high performance of energy storage. Nano Research, 2020, 13, 759-767.	5.8	20
49	Switched-capacitor-convertors based on fractal design for output power management of triboelectric nanogenerator. Nature Communications, 2020, 11, 1883.	5.8	154
50	Quantitative Analysis of Cation Selectivity of the Electrodes in Multi-ion Electrolytes Based on 2H-Phase MoS2. Journal of Physical Chemistry C, 2020, 124, 9665-9672.	1.5	3
51	High performance of filter capacitor based on nitrogen-doped carbon nanotube supercapacitor. Nanotechnology, 2020, 31, 495601.	1.3	4
52	Ti-Doped Tunnel-Type Na ₄ Mn ₉ O ₁₈ Nanoparticles as Novel Anode Materials for High-Performance Supercapacitors. ACS Applied Materials & Samp; Interfaces, 2019, 11, 28900-28908.	4.0	23
53	In situ Raman study of nickel bicarbonate for high-performance energy storage device. Nano Energy, 2019, 64, 103919.	8.2	112
54	Actuation and sensor integrated self-powered cantilever system based on TENG technology. Nano Energy, 2019, 64, 103920.	8.2	60

#	Article	IF	Citations
55	A Nonencapsulative Pendulumâ€Like Paper–Based Hybrid Nanogenerator for Energy Harvesting. Advanced Energy Materials, 2019, 9, 1901149.	10.2	88
56	A flutter-effect-based triboelectric nanogenerator for breeze energy collection from arbitrary directions and self-powered wind speed sensor. Nano Research, 2019, 12, 3018-3023.	5.8	74
57	A strategy to promote efficiency and durability for sliding energy harvesting by designing alternating magnetic stripe arrays in triboelectric nanogenerator. Nano Energy, 2019, 66, 104087.	8.2	60
58	Oblate Spheroidal Triboelectric Nanogenerator for Allâ€Weather Blue Energy Harvesting. Advanced Energy Materials, 2019, 9, 1900801.	10.2	162
59	Diethyl ether as self-healing electrolyte additive enabled long-life rechargeable aqueous zinc ion batteries. Nano Energy, 2019, 62, 275-281.	8.2	455
60	Making light work with triboelectric energy conversion. Journal of Materials Science, 2019, 54, 8829-8830.	1.7	1
61	Integrated charge excitation triboelectric nanogenerator. Nature Communications, 2019, 10, 1426.	5.8	375
62	Optical porous hollow-boxes assembled by SrSO4/TiO2/Pt nanoparticles for high performance of photocatalytic H2 evolution. Nano Energy, 2019, 59, 129-137.	8.2	31
63	Rational Electron Transmission Structure in an Ag ₂ 0/TiO ₂ (anatase-B) System for Effective Enhancement of Visible Light Photocatalytic Activity. Journal of Physical Chemistry C, 2019, 123, 1817-1827.	1.5	23
64	Porous Fe2O3 nanospheres anchored on activated carbon cloth for high-performance symmetric supercapacitors. Nano Energy, 2019, 57, 379-387.	8.2	251
65	Triboelectric and Electromagnetic Hybrid Nanogenerator Based on a Crankshaft Piston System as a Multifunctional Energy Harvesting Device. Advanced Materials Technologies, 2019, 4, 1800278.	3.0	23
66	A full-packaged rolling triboelectric-electromagnetic hybrid nanogenerator for energy harvesting and building up self-powered wireless systems. Nano Energy, 2019, 56, 300-306.	8.2	96
67	Elucidating Li-ion adsorption and diffusion behavior on the surface of Cu0.7Co2.3O4 and improvement of performance as flexible full solid-state supercapacitor. Electrochimica Acta, 2019, 293, 380-389.	2.6	13
68	Hybridized nanogenerator based on honeycomb-like three electrodes for efficient ocean wave energy harvesting. Nano Energy, 2018, 47, 217-223.	8.2	89
69	Whirligig-inspired triboelectric nanogenerator with ultrahigh specific output as reliable portable instant power supply for personal health monitoring devices. Nano Energy, 2018, 47, 74-80.	8.2	122
70	Magnetorheological elastomers enabled high-sensitive self-powered tribo-sensor for magnetic field detection. Nanoscale, 2018, 10, 4745-4752.	2.8	73
71	Wireless Electric Energy Transmission through Various Isolated Solid Media Based on Triboelectric Nanogenerator. Advanced Energy Materials, 2018, 8, 1703086.	10.2	58
72	Approaching the lithium-manganese oxides' energy storage limit with Li2MnO3 nanorods for high-performance supercapacitor. Nano Energy, 2018, 43, 168-176.	8.2	128

#	Article	IF	CITATIONS
73	Enhancing the Output Charge Density of TENG via Building Longitudinal Paths of Electrostatic Charges in the Contacting Layers. ACS Applied Materials & Samp; Interfaces, 2018, 10, 2158-2165.	4.0	83
74	Triboelectric nanogenerator based on magnetically induced retractable spring steel tapes for efficient energy harvesting of large amplitude motion. Nano Research, 2018, 11, 633-641.	5.8	25
75	Rational design of CuO nanostructures grown on carbon fiber fabrics with enhanced electrochemical performance for flexible supercapacitor. Journal of Materials Science, 2018, 53, 739-748.	1.7	19
76	A self-powered 2D barcode recognition system based on sliding mode triboelectric nanogenerator for personal identification. Nano Energy, 2018, 43, 253-258.	8.2	65
77	Rotation sensing and gesture control of a robot joint via triboelectric quantization sensor. Nano Energy, 2018, 54, 453-460.	8.2	203
78	Waxberry-Like Nanosphere Li4Mn5O12 as High Performance Electrode Materials for Supercapacitors. Journal of Low Power Electronics and Applications, 2018, 8, 32.	1.3	1
79	Direct growth of CuCo ₂ S ₄ nanosheets on carbon fiber textile with enhanced electrochemical pseudocapacitive properties and electrocatalytic properties towards glucose oxidation. Nanoscale, 2018, 10, 14304-14313.	2.8	119
80	Sodium ions pre-intercalation stabilized tunnel structure of Na2Mn8O16 nanorods for supercapacitors with long cycle life. Chemical Engineering Journal, 2018, 354, 1050-1057.	6.6	48
81	A highly sensitive, self-powered triboelectric auditory sensor for social robotics and hearing aids. Science Robotics, 2018, 3, .	9.9	573
82	Traditional weaving craft for one-piece self-charging power textile for wearable electronics. Nano Energy, 2018, 50, 536-543.	8.2	135
83	High energy density hybrid supercapacitor based on 3D mesoporous cuboidal Mn2O3 and MOF-derived porous carbon polyhedrons. Electrochimica Acta, 2018, 282, 1-9.	2.6	54
84	A fully-packaged and robust hybridized generator for harvesting vertical rotation energy in broad frequency band and building up self-powered wireless systems. Nano Energy, 2017, 33, 508-514.	8.2	63
85	Multifunctional TENG for Blue Energy Scavenging and Selfâ€Powered Windâ€Speed Sensor. Advanced Energy Materials, 2017, 7, 1602397.	10.2	273
86	Electrochemical investigations of cobalt-free perovskite cathode material for intermediate temperature solid oxide fuel cell. International Journal of Hydrogen Energy, 2017, 42, 10416-10422.	3.8	25
87	Ultralight Cut-Paper-Based Self-Charging Power Unit for Self-Powered Portable Electronic and Medical Systems. ACS Nano, 2017, 11, 4475-4482.	7.3	201
88	WGUs sensor based on integrated wind-induced generating units for $360 \hat{A}^{\circ}$ wind energy harvesting and self-powered wind velocity sensing. RSC Advances, 2017, 7, 23208-23214.	1.7	17
89	Precisely quantified catalyst based on in situ growth of Cu 2 O nanoparticles on a graphene 3D network for highly sensitive glucose sensor. Sensors and Actuators B: Chemical, 2017, 250, 333-341.	4.0	39
90	High efficient harvesting of underwater ultrasonic wave energy by triboelectric nanogenerator. Nano Energy, 2017, 38, 101-108.	8.2	146

#	Article	IF	Citations
91	Rational design of photoelectron-trapped/accumulated site and transportation path for superior photocatalyst. Nano Energy, 2017, 38, 271-280.	8.2	38
92	Promoting power density by cleaving LiCoO2 into nano-flake structure for high performance supercapacitor. Nanoscale, 2017, 9, 5509-5516.	2.8	26
93	Ultra-fine CuO Nanoparticles Embedded in Three-dimensional Graphene Network Nano-structure for High-performance Flexible Supercapacitors. Electrochimica Acta, 2017, 234, 63-70.	2.6	46
94	A novel \hat{l}^2 -MnO 2 micro/nanorod arrays directly grown on flexible carbon fiber fabric for high-performance enzymeless glucose sensing. Electrochimica Acta, 2017, 225, 121-128.	2.6	52
95	Flower-structured titanium oxide with two phase coexistence supported Pt electrocatalyst for effective enhancement of electrocatalytic activity. International Journal of Hydrogen Energy, 2017, 42, 5948-5957.	3.8	9
96	An inductor-free auto-power-management design built-in triboelectric nanogenerators. Nano Energy, 2017, 31, 302-310.	8.2	104
97	Eye motion triggered self-powered mechnosensational communication system using triboelectric nanogenerator. Science Advances, 2017, 3, e1700694.	4.7	491
98	High-performance flexible supercapacitors based on C/Na2Ti5O11 nanocomposite electrode materials. Journal of Materials Science, 2017, 52, 13897-13908.	1.7	8
99	Growth of NiMn LDH nanosheet arrays on KCu ₇ S ₄ microwires for hybrid supercapacitors with enhanced electrochemical performance. Journal of Materials Chemistry A, 2017, 5, 20579-20587.	5.2	116
100	Enhanced Photocatalytic Activity of Nanoparticle-Aggregated Ag–AgX(XÂ=ÂCl, Br)@TiO2 Microspheres Under Visible Light. Nano-Micro Letters, 2017, 9, 49.	14.4	50
101	Embedding variable micro-capacitors in polydimethylsiloxane for enhancing output power of triboelectric nanogenerator. Nano Research, 2017, 10, 320-330.	5.8	106
102	Aligning graphene sheets in PDMS for improving output performance of triboelectric nanogenerator. Carbon, 2017, 111, 569-576.	5.4	153
103	A Novel Triboelectric Generator Based on the Combination of a Waterwheelâ€Like Electrode with a Spring Steel Plate For Efficient Harvesting of Lowâ€Velocity Rotational Motion Energy. Advanced Electronic Materials, 2016, 2, 1500448.	2.6	16
104	A Waterâ€Proof Triboelectric–Electromagnetic Hybrid Generator for Energy Harvesting in Harsh Environments. Advanced Energy Materials, 2016, 6, 1501593.	10.2	243
105	Rolling Friction Enhanced Freeâ€Standing Triboelectric Nanogenerators and their Applications in Selfâ€Powered Electrochemical Recovery Systems. Advanced Functional Materials, 2016, 26, 1054-1062.	7.8	101
106	Harvesting Low-Frequency (<5 Hz) Irregular Mechanical Energy: A Possible Killer Application of Triboelectric Nanogenerator. ACS Nano, 2016, 10, 4797-4805.	7.3	606
107	Hierarchical mesoporous NiFe ₂ O ₄ nanocone forest directly growing on carbon textile for high performance flexible supercapacitors. Journal of Materials Chemistry A, 2016, 4, 8851-8859.	5.2	123
108	A high-performance flexible solid-state supercapacitor based on Li-ion intercalation into tunnel-structure iron sulfide. Electrochimica Acta, 2016, 219, 742-750.	2.6	44

#	Article	IF	Citations
109	Self-Powered Triboelectric Micro Liquid/Gas Flow Sensor for Microfluidics. ACS Nano, 2016, 10, 8104-8112.	7. 3	131
110	Double-induced-mode integrated triboelectric nanogenerator based on spring steel to maximize space utilization. Nano Research, 2016, 9, 3355-3363.	5.8	32
111	Tracking Pseudocapacitive Contribution to Superior Energy Storage of MnS Nanoparticles Grown on Carbon Textile. ACS Applied Materials & Samp; Interfaces, 2016, 8, 24621-24628.	4.0	82
112	Carbon-modified Na2Ti3O7·2H2O nanobelts as redox active materials for high-performance supercapacitor. Nano Energy, 2016, 28, 115-123.	8.2	51
113	Hierarchical Porous Nanostructures of Manganese(III) Oxyhydroxide for Allâ€Solidâ€State Flexible Supercapacitors. Energy Technology, 2016, 4, 1450-1454.	1.8	11
114	Flexible and transparent triboelectric nanogenerator based on high performance well-ordered porous PDMS dielectric film. Nano Research, 2016, 9, 3714-3724.	5.8	120
115	All-in-One Shape-Adaptive Self-Charging Power Package for Wearable Electronics. ACS Nano, 2016, 10, 10580-10588.	7.3	290
116	Self-powered textile for wearable electronics by hybridizing fiber-shaped nanogenerators, solar cells, and supercapacitors. Science Advances, 2016, 2, e1600097.	4.7	705
117	Radiative/Nonradiative Recombination Affected by Defects and Electron–Phone Coupling in CdWO ₄ Nanorods. Journal of Physical Chemistry C, 2016, 120, 12218-12225.	1.5	28
118	Harvesting Broad Frequency Band Blue Energy by a Triboelectric–Electromagnetic Hybrid Nanogenerator. ACS Nano, 2016, 10, 6526-6534.	7.3	244
119	High-efficiency, stable and non-chemically doped graphene–Si solar cells through interface engineering and PMMA antireflection. RSC Advances, 2016, 6, 10175-10179.	1.7	36
120	Direct growth of MnOOH nanorod arrays on a carbon cloth for high-performance non-enzymatic hydrogen peroxide sensing. Analytica Chimica Acta, 2016, 913, 128-136.	2.6	42
121	Enhancing Performance of Triboelectric Nanogenerator by Filling High Dielectric Nanoparticles into Sponge PDMS Film. ACS Applied Materials & Sponge PDMS Fil	4.0	474
122	Charge storage in KCu7S4 as redox active material for a flexible all-solid-state supercapacitor. Nano Energy, 2016, 19, 363-372.	8.2	77
123	Flexible full-solid state supercapacitors based on zinc sulfide spheres growing on carbon textile with superior charge storage. Journal of Materials Chemistry A, 2016, 4, 667-674.	5.2	133
124	Ag Nanowires Single Electrode Triboelectric Nanogenerator and Its Angle Sensors. Energy Harvesting and Systems, 2016, 3, 91-99.	1.7	4
125	Room-Temperature Magnetism of Ceria Nanocubes by Inductively Transferring Electrons to Ce Atoms from Nearby Oxygen Vacancy. Nano-Micro Letters, 2016, 8, 13-19.	14.4	23
126	Nanorod-aggregated flower-like CuO grown on a carbon fiber fabric for a super high sensitive non-enzymatic glucose sensor. Journal of Materials Chemistry B, 2015, 3, 5777-5785.	2.9	68

#	Article	IF	CITATIONS
127	An Ultrarobust High-Performance Triboelectric Nanogenerator Based on Charge Replenishment. ACS Nano, 2015, 9, 5577-5584.	7.3	135
128	Spiral-interdigital-electrode-based multifunctional device: Dual-functional triboelectric generator and dual-functional self-powered sensor. Nano Energy, 2015, 12, 626-635.	8.2	39
129	Visible-light photocatalytic activity of Ag2O coated Bi2WO6 hierarchical microspheres assembled by nanosheets. Applied Surface Science, 2015, 327, 62-67.	3.1	53
130	Notepad-like Triboelectric Generator for Efficiently Harvesting Low-Velocity Motion Energy by Interconversion between Kinetic Energy and Elastic Potential Energy. ACS Applied Materials & Samp; Interfaces, 2015, 7, 1275-1283.	4.0	20
131	CdS/CdSe core/shell nanowall arrays for high sensitive photoelectrochemical sensors. Journal of Alloys and Compounds, 2015, 630, 94-99.	2.8	27
132	Honeycomb-like three electrodes based triboelectric generator for harvesting energy in full space and as a self-powered vibration alertor. Nano Energy, 2015, 15, 766-775.	8.2	26
133	Faradic redox active material of Cu ₇ S ₄ nanowires with a high conductance for flexible solid state supercapacitors. Nanoscale, 2015, 7, 13610-13618.	2.8	134
134	Novel Spiral-Like Electrode Structure Design for Realization of Two Modes of Energy Harvesting. ACS Applied Materials & Samp; Interfaces, 2015, 7, 16450-16457.	4.0	11
135	Enhanced output-power of nanogenerator by modifying PDMS film with lateral ZnO nanotubes and Ag nanowires. RSC Advances, 2015, 5, 32566-32571.	1.7	22
136	High performance solid state flexible supercapacitor based on molybdenum sulfide hierarchical nanospheres. Journal of Power Sources, 2015, 285, 63-69.	4.0	357
137	Folded Elastic Strip-Based Triboelectric Nanogenerator for Harvesting Human Motion Energy for Multiple Applications. ACS Applied Materials & Samp; Interfaces, 2015, 7, 20469-20476.	4.0	50
138	Enhanced photoelectrochemical perporties of graphene nanowalls–CdS composite materials. Journal of Alloys and Compounds, 2015, 651, 230-236.	2.8	14
139	Newton's cradle motion-like triboelectric nanogenerator to enhance energy recycle efficiency by utilizing elastic deformation. Journal of Materials Chemistry A, 2015, 3, 21133-21139.	5.2	23
140	\hat{l}^2 -NiMoO ₄ nanowire arrays grown on carbon cloth for 3D solid asymmetry supercapacitors. RSC Advances, 2015, 5, 107098-107104.	1.7	24
141	Improving energy conversion efficiency for triboelectric nanogenerator with capacitor structure by maximizing surface charge density. Nanoscale, 2015, 7, 1896-1903.	2.8	222
142	A Triboelectric Generator Based on Checkerâ€Like Interdigital Electrodes with a Sandwiched PET Thin Film for Harvesting Sliding Energy in All Directions. Advanced Energy Materials, 2015, 5, 1400790.	10.2	116
143	MnO2@KCu7S4 NWs hybrid compositions for high-power all-solid-state supercapacitor. Journal of Power Sources, 2015, 274, 477-482.	4.0	38
144	Ultrahigh thermoelectricity of atomically thick Bi2Se3 single layers: A computational study. Applied Surface Science, 2014, 321, 525-530.	3.1	11

#	Article	IF	CITATIONS
145	A Flexible micro-supercapacitor based on a pen ink-carbon fiber thread. Journal of Materials Chemistry A, 2014, 2, 19665-19669.	5.2	69
146	Three-dimensional Ag2O/WO3·0.33H2O heterostructures for improving photocatalytic activity. Materials Research Bulletin, 2014, 50, 91-94.	2.7	13
147	A nanogenerator for harvesting airflow energy and light energy. Journal of Materials Chemistry A, 2014, 2, 2079-2087.	5.2	126
148	Super-high photocatalytic activity of Fe 2 O 3 nanoparticles anchored on Bi 2 O 2 CO 3 nanosheets with exposed $\{001\}$ active facets. Applied Surface Science, 2014, 316, 93-101.	3.1	29
149	C@KCu7S4 microstructure for solid-state supercapacitors. RSC Advances, 2014, 4, 40542-40545.	1.7	10
150	Flexible interdigital-electrodes-based triboelectric generators for harvesting sliding and rotating mechanical energy. Journal of Materials Chemistry A, 2014, 2, 19427-19434.	5.2	48
151	Airflow-Induced Triboelectric Nanogenerator as a Self-Powered Sensor for Detecting Humidity and Airflow Rate. ACS Applied Materials & Samp; Interfaces, 2014, 6, 17184-17189.	4.0	176
152	Magnetism in Dopant-Free Hexagonal CdS Nanorods: Experiments and First-Principles Analysis. Journal of Physical Chemistry C, 2014, 118, 11426-11431.	1.5	11
153	Harvesting heat energy from hot/cold water with a pyroelectric generator. Journal of Materials Chemistry A, 2014, 2, 11940-11947.	5. 2	101
154	Room Temperature Ferromagnetism in Shuttle-like BaMoO ₄ Microcrystals. Journal of Physical Chemistry C, 2014, 118, 13826-13832.	1.5	9
155	Different proportions of C/KCu7S4 hybrid structure for high-performance supercapacitors. Journal of Power Sources, 2014, 263, 175-180.	4.0	25
156	Triboelectric Nanogenerator for Harvesting Vibration Energy in Full Space and as Selfâ€Powered Acceleration Sensor. Advanced Functional Materials, 2014, 24, 1401-1407.	7.8	381
157	Sensitive optical switch based on Bi2S3 single nanowire and nanowire film. Journal of Alloys and Compounds, 2014, 612, 301-305.	2.8	16
158	KCu7S4 nanowires and the Mn/KCu7S4 nanostructure for solid-state supercapacitors. Journal of Materials Chemistry A, 2013, 1, 15530.	5.2	43
159	Strain Effects To Optimize Thermoelectric Properties of Doped Bi ₂ O ₂ Se via Tran–Blaha Modified Becke–Johnson Density Functional Theory. Journal of Physical Chemistry C, 2013, 117, 21597-21602.	1.5	111
160	Introducing kalium into copper sulfide for the enhancement of thermoelectric properties. Journal of Materials Chemistry A, 2013, 1, 13721.	5.2	18
161	Pt nanoparticles supported on submicrometer-sized TiO2 spheres for effective methanol and ethanol oxidation. Electrochimica Acta, 2013, 105, 130-136.	2.6	59
162	Synthesis and magnetic property of Fe doped LaPO4 nanorods. Applied Surface Science, 2013, 268, 458-463.	3.1	9

#	Article	IF	Citations
163	Large-scale synthesis and photoluminescence of cobalt tungstate nanowires. Physical Review B, 2013, 87, .	1.1	19
164	Tunable Synthesis and Thermoelectric Property of Bi ₂ S ₃ Nanowires. Journal of Physical Chemistry C, 2013, 117, 5515-5520.	1.5	55
165	Three-dimensional CdS nanostructure for photoelectrochemical sensor. Sensors and Actuators B: Chemical, 2013, 182, 461-466.	4.0	27
166	Defect-Induced and UV-Irradiation-Enhanced Ferromagnetism in Cubic Barium Niobate. Journal of Physical Chemistry C, 2013, 117, 14281-14288.	1.5	12
167	Synthesis and photocatalytic property of lead molybdate dendrites with exposed (0 0 1) facet. Applied Surface Science, 2012, 258, 5858-5862.	3.1	32
168	Synthesis and characterization of TiO2/CdS core–shell nanorod arrays and their photoelectrochemical property. Journal of Alloys and Compounds, 2012, 523, 139-145.	2.8	68
169	Room temperature ferromagnetic property of Ag2Mo2O7 nanowires. Physica E: Low-Dimensional Systems and Nanostructures, 2012, 46, 213-217.	1.3	7
170	Room Temperature Magnetic Properties of Fe/Co-Doped Barium Niobate Crystals. Journal of Physical Chemistry C, 2012, 116, 23041-23046.	1.5	14
171	Reshaping the tips of ZnO nanowires by pulsed laser irradiation. Nano Research, 2012, 5, 412-420.	5.8	20
172	Preparation and Improved Photocatalytic Activity of WO3·0.33H2O Nanonetworks. Catalysis Letters, 2012, 142, 637-645.	1.4	30
173	Synthesis of SnO2 Nanostructures and Their Application for Hydrogen Evolution Reaction. Catalysis Letters, 2012, 142, 809-815.	1.4	22
174	Synthesis and visible light photocatalytic activity of \hat{l}^2 -AgVO3 nanowires. Solid State Sciences, 2012, 14, 535-539.	1.5	54
175	Synthesis and photocatalytic property of ZnSe flowerlike hierarchical structure. Applied Surface Science, 2011, 257, 10679-10685.	3.1	44
176	Effective solar absorption and radial microchannels of SnO2 hierarchical structure for high photocatalytic activity. Catalysis Communications, 2011, 14, 32-36.	1.6	77
177	Room-temperature ferromagnetic properties of Fe-doped ZnO rod arrays. Solid State Sciences, 2011, 13, 388-393.	1.5	56
178	Synthesis, characterization, and optical properties of Ag ₂ Mo ₂ O ₇ nanowires. Physica Status Solidi (A) Applications and Materials Science, 2011, 208, 1937-1941.	0.8	16
179	Selective synthesis and fluorescence of Pb5(VO4)3OH nano- and micro-crystals. Physica E: Low-Dimensional Systems and Nanostructures, 2011, 43, 938-942.	1.3	3
180	ZnS nanoparticles self-assembled from ultrafine particles and their highly photocatalytic activity. Physica E: Low-Dimensional Systems and Nanostructures, 2011, 43, 1071-1075.	1.3	27

#	Article	IF	CITATIONS
181	UV sensor based on TiO2 nanorod arrays on FTO thin film. Sensors and Actuators B: Chemical, 2011, 156, 114-119.	4.0	179
182	Temperature driven in-situ phase transformation of PbWO4 nanobelts. Journal of Applied Physics, 2011, 109, .	1.1	6
183	Pt hierarchical structure catalysts on BaTiO3/Ti electrode for methanol and ethanol electrooxidations. Journal of Power Sources, 2010, 195, 1594-1598.	4.0	12
184	Optical properties of ZnTe nanorods synthesized via a facile low-temperature solvothermal route. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2010, 171, 11-15.	1.7	22
185	Glassy State Lead Tellurite Nanobelts: Synthesis and Properties. Nanoscale Research Letters, 2010, 5, 1344-1350.	3.1	13
186	Growth of Dendritic Copper Nanocrystals in Alkaline Solution. Journal of Superconductivity and Novel Magnetism, 2010, 23, 893-895.	0.8	6
187	Al-doped Fe3O4 Nanoparticles and Their Magnetic Properties. Journal of Superconductivity and Novel Magnetism, 2010, 23, 909-911.	0.8	2
188	Synthesis of ZnS Nanoflowers by Composite-Hydroxide-Mediated Approach. Journal of Superconductivity and Novel Magnetism, 2010, 23, 901-903.	0.8	6
189	Room-temperature ferromagnetic properties of Ni-doped ZnO rod arrays. Physica E: Low-Dimensional Systems and Nanostructures, 2010, 42, 2086-2090.	1.3	26
190	Synthesis of CuO nanostructures and their application for nonenzymatic glucose sensing. Sensors and Actuators B: Chemical, 2010, 144, 220-225.	4.0	375
191	Titania nanotube arrays for light sensor and UV photometer. Sensors and Actuators B: Chemical, 2010, 144, 203-207.	4.0	30
192	Building Ag nanoparticle 3D catalyst via Na2Ti3O7 nanowires for the detection of hydrogen peroxide. Sensors and Actuators B: Chemical, 2010, 144, 289-294.	4.0	51
193	Synthesis of BaO nanowires and their humidity sensitive property. , 2010, , .		0
194	The synthesis and photoelectric response of single-crystalline V <inf>4</inf> O <inf>7</inf> nanowires. , 2010, , .		1
195	Synthesis and Thermoelectric Property of Cu2â^'xSe Nanowires. Journal of Physical Chemistry C, 2010, 114, 14849-14853.	1.5	48
196	Synthesis of functional carbon nanospheres and amperometric sensing of hydrogen peroxide. , 2010, , .		0
197	Fabrication of 3D Pt catalysts via support of Na2Ti3O7 nanowires for methanol and ethanol electrooxidation. Catalysis Communications, 2010, 12, 100-104.	1.6	16
198	Raspite PbWO4 nanobelts: synthesis and properties. CrystEngComm, 2010, 12, 3277.	1.3	25

#	Article	IF	CITATION
199	Direct synthesis and spectrum analysis of CeO2 nanoparticles deposited on carbon nanotubes. Journal Wuhan University of Technology, Materials Science Edition, 2009, 24, 34-37.	0.4	3
200	Synthesis and thermoelectric properties of PbTe nanorods and microcubes. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2009, 163, 57-61.	1.7	40
201	Electroless deposition of BaTiO3 nanocubes for electrochemical sensing. Sensors and Actuators B: Chemical, 2009, 137, 62-66.	4.0	16
202	Optical switches based on nanowires synthesized by molten salt solvent method. Solid State Communications, 2009, 149, 1894-1896.	0.9	48
203	A rapid-response humidity sensor based on BaNbO3 nanocrystals. Sensors and Actuators B: Chemical, 2009, 136, 128-132.	4.0	41
204	Growth of ZnO nanotube arrays and nanotube based piezoelectric nanogenerators. Journal of Materials Chemistry, 2009, 19, 9260.	6.7	181
205	Composite-hydroxide-mediated approach as a general methodology for synthesizing nanostructures. Journal of Materials Chemistry, 2009, 19, 858.	6.7	75
206	BaTiO3 nanocubes: Size-selective formation and structure analysis. Materials Letters, 2008, 62, 235-238.	1.3	22
207	Phase-Transition-Dependent Conductivity and Thermoelectric Property of Silver Telluride Nanowires. Journal of Physical Chemistry C, 2008, 112, 16130-16133.	1.5	56
208	DNA Functionalized Single-Walled Carbon Nanotubes for Electrochemical Detection. Journal of Physical Chemistry B, 2005, 109, 20072-20076.	1.2	127