
Gunnar Jansson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3841274/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The genetic and economic gains from forest tree breeding programmes in Scandinavia and Finland. Scandinavian Journal of Forest Research, 2017, 32, 273-286.	1.4	74
2	Genetic variation in growth, stem straightness and branch thickness in clonal trials of Acacia auriculiformis at three contrasting sites in Vietnam. Forest Ecology and Management, 2008, 255, 156-167.	3.2	59
3	Genomic data provide new insights on the demographic history and the extent of recent material transfers in Norway spruce. Evolutionary Applications, 2019, 12, 1539-1551.	3.1	49
4	Patterns of genetic parameters for height in field genetic tests of Picea abies and Pinus sylvestris in Sweden. Tree Genetics and Genomes, 2011, 7, 1099-1111.	1.6	38
5	Assessing the potential for assisted gene flow using past introduction of Norway spruce in southern Sweden: Local adaptation and genetic basis of quantitative traits in trees. Evolutionary Applications, 2019, 12, 1946-1959.	3.1	36
6	Scots pine transfer effect models for growth and survival in Sweden and Finland. Silva Fennica, 2016, 50, .	1.3	35
7	Historic transfer of forest reproductive material in the Nordic region: drivers, scale and implications. Forestry, 2016, 89, 325-337.	2.3	31
8	Gains from selectingPinus sylvestrisin southern Sweden for volume per hectare. Scandinavian Journal of Forest Research, 2007, 22, 185-192.	1.4	22
9	Norway Spruce (Picea abies (L.) H.Karst.). Managing Forest Ecosystems, 2013, , 123-176.	0.9	21
10	Urea fertilizations of a Norway spruce stand: effects on nitrogen in soil water and field-layer vegetation after final felling. Canadian Journal of Forest Research, 2003, 33, 375-384.	1.7	20
11	La teneur en cellulose comme un trait de sélection pour l'amélioration du rendement en pâte kraft d'Eucalyptus urophylla. Annals of Forest Science, 2009, 66, 711-711.	2.0	20
12	Genotype by environment interaction in the southern Swedish breeding population of <i>Picea abies</i> using new climatic indices. Scandinavian Journal of Forest Research, 2015, 30, 112-121.	1.4	20
13	Correspondence between single-tree and multiple-tree plot genetic tests for production traits in <i>Pinus sylvestris</i> . Canadian Journal of Forest Research, 1998, 28, 450-458.	1.7	19
14	Inheritance and diversity of simple sequence repeat (SSR) microsatellite markers in various families of Picea abies. Hereditas, 2003, 138, 219-227.	1.4	18
15	Improvement of Betula pendula by clonal and progeny testing of phenotypically selected trees. Scandinavian Journal of Forest Research, 2005, 20, 292-303.	1.4	18
16	Retrospective genetic testing ofPicea abiesunder controlled temperature and moisture regimes. Canadian Journal of Forest Research, 2002, 32, 81-91.	1.7	17
17	Analysis of non-additive genetic effects in Norway spruce. Tree Genetics and Genomes, 2019, 15, 1.	1.6	17
18	Genetic parameters for grain angle in 28-year-old Norway spruce progeny trials and their parent seed orchard. Annals of Forest Science, 2008, 65, 301.	2.0	16

GUNNAR JANSSON

#	Article	IF	CITATIONS
19	Genetic variation in microsatellite stability of somatic embryo plants of <i>Picea abies</i> : A case study using six unrelated full-sib families. Scandinavian Journal of Forest Research, 2008, 23, 2-11.	1.4	16
20	Relationship of wood composition to growth traits of selected open-pollinated families of Eucalyptus urophylla from a progeny trial in Vietnam. New Forests, 2010, 39, 301-312.	1.7	16
21	Analysis of the distribution of marker classes in a genetic linkage map: a case study in Norway spruce (Picea abies karst). Tree Genetics and Genomes, 2005, 1, 93-102.	1.6	15
22	Effects of previous nitrogen fertilization on soil-solution chemistry after final felling and soil scarification at two nitrogen-limited forest sites. Canadian Journal of Forest Research, 2013, 43, 396-404.	1.7	15
23	Genetic variation in nutrient utilization and growth traits in <i>picea abies</i> seedlings. Scandinavian Journal of Forest Research, 2003, 18, 19-28.	1.4	13
24	Genetic correlations between spiral grain and growth and quality traits in Picea abies. Canadian Journal of Forest Research, 2010, 40, 173-183.	1.7	13
25	Utilisation du retrait du bois dans l'amélioration de l'Acacia auriculiformis A. Cunn. ex Benth Ã croissance rapide au Vietnam. Annals of Forest Science, 2009, 66, 611-611.	2.0	11
26	Wood stiffness and strength as selection traits for sawn timber in Acacia auriculiformis. Canadian Journal of Forest Research, 2010, 40, 322-329.	1.7	11
27	Ochratoxin a in rice cultivars after inoculation ofPenicillium verrucosum. Natural Toxins, 1998, 6, 73-84.	1.0	10
28	Predicting the mortality of Pinus sylvestris attacked by Gremmeniella abietina and occurrence of Tomicus piniperda colonization. Canadian Journal of Forest Research, 2005, 35, 860-867.	1.7	10
29	The potential for the genetic improvement of sawn timber traits in Picea abies. Canadian Journal of Forest Research, 2014, 44, 273-280.	1.7	10
30	Economic weight of tree survival relative to volume production in tree breeding: A case study with <i>Pinus sylvestris</i> in northern Sweden. Scandinavian Journal of Forest Research, 2009, 24, 288-297.	1.4	9
31	Relationships between early assessments of stem and branch properties and sawn timber traits in a <i>Pinus sylvestris</i> progeny trial. Scandinavian Journal of Forest Research, 2010, 25, 421-431.	1.4	9
32	Development of economic forest tree breeding objectives: review of existing methodology and discussion of its application in Swedish conditions. Scandinavian Journal of Forest Research, 2012, 27, 681-691.	1.4	9
33	Genetic information from progeny trials: a comparison between progenies generated by open pollination and by controlled crosses. Tree Genetics and Genomes, 2013, 9, 731-740.	1.6	9
34	Optimal timing of early genetic selection for sawn timber traits in Picea abies. European Journal of Forest Research, 2018, 137, 553-564.	2.5	9
35	Retrospective Genetic Tests of Pinus sylvestris L. in Growth Chambers with Two Irrigation Regimes and Two Temperatures. Scandinavian Journal of Forest Research, 2001, 16, 21-29.	1.4	8
36	Comparing gain and optimum test size from progeny testing and phenotypic selection in Pinus sylvestris. Canadian Journal of Forest Research, 2007, 37, 1227-1235.	1.7	8

GUNNAR JANSSON

#	Article	IF	CITATIONS
37	Developing a Scots pine breeding objective: a case study involving a Swedish sawmill. Silva Fennica, 2010, 44, .	1.3	8
38	Genotype by Environment Interaction in Pinus sylvestris L. in Southern Sweden. Silvae Genetica, 2008, 57, 306-311.	0.8	8
39	A model to estimate economic weight of tree survival relative to volume production taking patchiness into account. Scandinavian Journal of Forest Research, 2009, 24, 278-287.	1.4	7
40	Needs and benefits of empirical power transformations for production and quality traits in forest tree breeding. Theoretical and Applied Genetics, 1993, 87, 487-497.	3.6	6
41	Use of trait combinations for evaluating juvenile–mature relationships in Picea abies (L.). Tree Genetics and Genomes, 2005, 1, 21-30.	1.6	6
42	Riparian forests along small streams on managed forest land in Sweden. Scandinavian Journal of Forest Research, 2018, 33, 133-146.	1.4	6
43	Logging Mats and Logging Residue as Ground Protection during Forwarder Traffic along Till Hillslopes. Croatian Journal of Forest Engineering, 2021, 42, .	1.9	6
44	Genetic Variation in Nutrient Utilization and Growth Traits in Picea abies Seedlings. Scandinavian Journal of Forest Research, 2003, 18, 19-28.	1.4	6
45	Connectedness among test series in mixed linear models of genetic evaluation for forest trees. Tree Genetics and Genomes, 2015, 11, 1.	1.6	4
46	Long-term effects on soil-water nitrogen and pH of clearcutting and simulated disc trenching of previously nitrogen-fertilised pine plots. Canadian Journal of Forest Research, 2018, 48, 1115-1123.	1.7	4
47	Genetic Improvement of Sawn-Board Stiffness and Strength in Scots Pine (Pinus sylvestris L.). Sensors, 2020, 20, 1129.	3.8	4
48	Which annual rings to assess grain angles in breeding of Scots pine for improved shape stability of sawn timber?. Silva Fennica, 2010, 44, .	1.3	4
49	Effects of pruning on wood properties of planted silver birch in southern Sweden. Silva Fennica, 2017, 51, .	1.3	4
50	Effects of whole-tree harvest on soil-water chemistry at five conifer sites in Sweden. Canadian Journal of Forest Research, 2017, 47, 349-356.	1.7	3
51	Effects of pruning and stand density on cone and pollen production in an experimental Pinus sylvestris seed orchard. Silva Fennica, 2015, 49, .	1.3	3
52	Genetic improvement of sawn-board shape stability in Scots pine (Pinus sylvestris L.). Industrial Crops and Products, 2020, 157, 112939.	5.2	2
53	The effect of fertilization on genetic parameters in Picea abies clones in central Sweden and consequences for breeding and deployment. Forest Ecology and Management, 2012, 270, 239-247.	3.2	1
54	Chemical similarity between introduced and native populations of Scots pine can facilitate transcontinental expansion of mountain pine beetle in North America. Biological Invasions, 2020, 22, 1067-1083.	2.4	1

#	Article	IF	CITATIONS
55	Genetic variation in responses of Pinus sylvestris trees to natural infection by Gremmeniella abietina. Scandinavian Journal of Forest Research, 2007, 22, 290-298.	1.4	0