
Tagbo H R Niepa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3841106/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Candida albicans stimulates Streptococcus mutans microcolony development via cross-kingdom biofilm-derived metabolites. Scientific Reports, 2017, 7, 41332.	3.3	148
2	An in-depth survey of the oil spill literature since 1968: Long term trends and changes since Deepwater Horizon. Marine Pollution Bulletin, 2016, 113, 371-379.	5.0	71
3	One-Step Generation of Cell-Encapsulating Compartments via Polyelectrolyte Complexation in an Aqueous Two Phase System. ACS Applied Materials & amp; Interfaces, 2016, 8, 25603-25611.	8.0	68
4	Controlling Pseudomonas aeruginosa persister cells by weak electrochemical currents and synergistic effects with tobramycin. Biomaterials, 2012, 33, 7356-7365.	11.4	54
5	Films of bacteria at interfaces. Advances in Colloid and Interface Science, 2017, 247, 561-572.	14.7	52
6	Microbial Nanoculture as an Artificial Microniche. Scientific Reports, 2016, 6, 30578.	3.3	30
7	Sensitizing Pseudomonas aeruginosa to antibiotics by electrochemical disruption of membrane functions. Biomaterials, 2016, 74, 267-279.	11.4	27
8	Films of Bacteria at Interfaces (FBI): Remodeling of Fluid Interfaces by Pseudomonas aeruginosa. Scientific Reports, 2017, 7, 17864.	3.3	26
9	Eradication of Pseudomonas aeruginosa cells by cathodic electrochemical currents delivered with graphite electrodes. Acta Biomaterialia, 2017, 50, 344-352.	8.3	18
10	Synergy between tobramycin and trivalent chromium ion in electrochemical control of Pseudomonas aeruginosa. Acta Biomaterialia, 2016, 36, 286-295.	8.3	13
11	Developing a Functional Poly(dimethylsiloxane)-Based Microbial Nanoculture System Using Dimethylallylamine. ACS Applied Materials & Interfaces, 2020, 12, 50581-50591.	8.0	8
12	Differential Gene Expression to Investigate the Effects of Low-level Electrochemical Currents on Bacillus subtilis. AMB Express, 2011, 1, 39.	3.0	7
13	Electrochemical Strategy for Eradicating Fluconazole-TolerantCandida albicansUsing Implantable Titanium. ACS Applied Materials & Interfaces, 2019, 11, 40997-41008.	8.0	5
14	Material properties of interfacial films of mucoid and nonmucoid Pseudomonas aeruginosa isolates. Acta Biomaterialia, 2020, 118, 129-140.	8.3	3
15	Assessing the performance of wax-based microsorbents for oil remediation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 627, 127227.	4.7	3
16	Micro-Technologies for Assessing Microbial Dynamics in Controlled Environments. Frontiers in Microbiology, 2021, 12, 745835.	3.5	3
17	Design of a well-defined poly(dimethylsiloxane)-based microbial nanoculture system. Materials Today Communications, 2021, 27, 102185.	1.9	2
18	Mucoid Coating Provides a Growth Advantage to <i>Pseudomonas aeruginosa</i> at Oil–Water Interfaces. ACS Applied Bio Materials, 2022, 5, 1868-1878.	4.6	2

Τάςβο Η R Νιέρα

#	Article	IF	CITATIONS
19	Droplet-based microsystems as novel assessment tools for oral microbial dynamics. Biotechnology Advances, 2022, 55, 107903.	11.7	2
20	Controlling Microbial Dynamics through Selective Solute Transport across Functional Nanocultures. ACS Applied Polymer Materials, 2022, 4, 2999-3012.	4.4	1
21	Investigating the Mucoid Switch of Pseudomonas aeruginosa at Oil-Water Interfaces. Microscopy and Microanalysis, 2019, 25, 1128-1129.	0.4	Ο
22	Material Properties of Interfacial Films of Mucoid and Nonmucoid Pseudomonas Aeruginosa Isolates. SSRN Electronic Journal, 0, , .	0.4	0