Didier Robert

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3840991/publications.pdf

Version: 2024-02-01

93 7,575 39
papers citations h-index

97 97 97 9624
all docs docs citations times ranked citing authors

86

g-index

#	Article	IF	CITATIONS
1	Modified TiO ₂ For Environmental Photocatalytic Applications: A Review. Industrial & Samp; Engineering Chemistry Research, 2013, 52, 3581-3599.	3.7	1,296
2	Bi2S3/TiO2 and CdS/TiO2 heterojunctions as an available configuration for photocatalytic degradation of organic pollutant. Journal of Photochemistry and Photobiology A: Chemistry, 2004, 163, 569-580.	3.9	532
3	Photocatalytic activity of Cu2O/TiO2, Bi2O3/TiO2 and ZnMn2O4/TiO2 heterojunctions. Catalysis Today, 2005, 101, 315-321.	4.4	525
4	Landfill leachate treatment methods: A review. Environmental Chemistry Letters, 2006, 4, 51-61.	16.2	407
5	Removal of microplastics from the environment. A review. Environmental Chemistry Letters, 2020, 18, 807-828.	16.2	341
6	Photosensitization of TiO2 by MxOy and MxSy nanoparticles for heterogeneous photocatalysis applications. Catalysis Today, 2007, 122, 20-26.	4.4	305
7	Solar photocatalysis: a clean process for water detoxification. Science of the Total Environment, 2002, 291, 85-97.	8.0	251
8	Photoelectrocatalytic technologies for environmental applications. Journal of Photochemistry and Photobiology A: Chemistry, 2012, 238, 41-52.	3.9	231
9	Synthesis of photocatalytic TiO2 nanoparticles: optimization of the preparation conditions. Journal of Photochemistry and Photobiology A: Chemistry, 2003, 157, 47-53.	3.9	214
10	Ethylene Removal and Fresh Product Storage: A Challenge at the Frontiers of Chemistry. Toward an Approach by Photocatalytic Oxidation. Chemical Reviews, 2013, 113, 5029-5070.	47.7	208
11	UV–vis versus visible degradation of Acid Orange II in a coupled CdS/TiO2 semiconductors suspension. Journal of Photochemistry and Photobiology A: Chemistry, 2006, 183, 218-224.	3.9	192
12	TiO2 Nanotube arrays: Influence of tube length on the photocatalytic degradation of Paraquat. Applied Catalysis B: Environmental, 2016, 194, 1-6.	20.2	185
13	Effect of alkaline-doped TiO2 on photocatalytic efficiency. Journal of Photochemistry and Photobiology A: Chemistry, 2004, 167, 49-57.	3.9	183
14	Influence of pH and chloride anion on the photocatalytic degradation of organic compounds. Applied Catalysis B: Environmental, 2001, 35, 117-124.	20.2	133
15	Photocatalytic decomposition of humic acids on TiO2. Journal of Photochemistry and Photobiology A: Chemistry, 2002, 152, 267-273.	3.9	124
16	Removal of atrazine and its by-products from water using electrochemical advanced oxidation processes. Water Research, 2017, 125, 91-103.	11.3	104
17	Chemisorption of phenols and acids on TiO2 surface. Applied Surface Science, 2000, 167, 51-58.	6.1	99
18	Solar photocatalytic degradation of humic acids as a model of organic compounds of landfill leachate in pilot-plant experiments: influence of inorganic salts. Applied Catalysis B: Environmental, 2004, 53, 127-137.	20.2	84

#	Article	IF	Citations
19	Photo-degradation of carbamazepine using TiO2 suspended photocatalysts. Journal of the Taiwan Institute of Chemical Engineers, 2015, 54, 109-117.	5.3	77
20	Combination of coagulation-flocculation and heterogeneous photocatalysis for improving the removal of humic substances in real treated water from Agbô River (Ivory-Coast). Catalysis Today, 2017, 281, 2-13.	4.4	73
21	Comparison of Hombikat UV100 and P25 TiO2 performance in gas-phase photocatalytic oxidation reactions. Journal of Photochemistry and Photobiology A: Chemistry, 2012, 250, 58-65.	3.9	69
22	The study of photocatalytic activities of titania and titania–silica aerogels. Applied Catalysis B: Environmental, 2003, 46, 441-451.	20.2	68
23	Ti-substituted LaFeO3 perovskite as photoassisted CWPO catalyst for water treatment. Applied Catalysis B: Environmental, 2019, 248, 120-128.	20.2	66
24	Photocatalytic degradation of the diuron pesticide. Environmental Chemistry Letters, 2008, 6, 163-167.	16.2	65
25	Cobalt modified red mud catalytic ozonation for the degradation of bezafibrate in water: Catalyst surface properties characterization and reaction mechanism. Chemical Engineering Journal, 2016, 284, 942-952.	12.7	65
26	Kinetics and mechanism of Paraquat's degradation: UV-C photolysis vs UV-C photocatalysis with TiO2/SiC foams. Journal of Hazardous Materials, 2019, 370, 164-171.	12.4	62
27	A parametric study of the UV-A photocatalytic oxidation of H2S over TiO2. Applied Catalysis B: Environmental, 2012, 115-116, 209-218.	20.2	59
28	\hat{l}^2 -SiC foams as a promising structured photocatalytic support for water and air detoxification. Catalysis Today, 2013, 209, 13-20.	4.4	59
29	Sol-gel synthesis of TiO2 nanoparticles: effect of Pluronic P123 on particle's morphology and photocatalytic degradation of paraquat. Environmental Science and Pollution Research, 2017, 24, 12582-12588.	5.3	58
30	Efficient photocatalytic mineralization of polymethylmethacrylate and polystyrene nanoplastics by $\text{TiO2}/\hat{l}^2\text{-SiC}$ alveolar foams. Environmental Chemistry Letters, 2021, 19, 1803-1808.	16.2	55
31	Nitrogen-containing organic compounds: Origins, toxicity and conditions of their photocatalytic mineralization over TiO2. Science of the Total Environment, 2017, 580, 1489-1504.	8.0	53
32	Activity enhancement pathways in LaFeO3@TiO2 heterojunction photocatalysts for visible and solar light driven degradation of myclobutanil pesticide in water. Journal of Hazardous Materials, 2020, 400, 123099.	12.4	53
33	Preliminary study of the use of \hat{l}^2 -SiC foam as a photocatalytic support for water treatment. Catalysis Today, 2011, 161, 3-7.	4.4	48
34	Reaction pathways, kinetics and toxicity assessment during the photocatalytic degradation of glyphosate and myclobutanil pesticides: Influence of the aqueous matrix. Chemical Engineering Journal, 2020, 384, 123315.	12.7	46
35	Heterogeneous photocatalytic degradation of 3-nitroacetophenone in TiO2 aqueous suspension. Journal of Photochemistry and Photobiology A: Chemistry, 2003, 156, 195-200.	3.9	44
36	Poisoning prevention of TiO2 photocatalyst coatings sputtered on soda-lime glass by intercalation of SiNx diffusion barriers. Surface and Coatings Technology, 2007, 201, 7706-7712.	4.8	44

#	Article	IF	Citations
37	Batch studies for the investigation of the sorption of the heavy metals Pb2+ and Zn2+ onto Amizour soil (Algeria). Geoderma, 2009, 154, 30-35.	5.1	44
38	Cerium doped red mud catalytic ozonation for bezafibrate degradation in wastewater: Efficiency, intermediates, and toxicity. Chemosphere, 2016, 146, 22-31.	8.2	44
39	Synergy effect between photocatalysis and heterogeneous photo-Fenton catalysis on Ti-doped LaFeO ₃ perovskite for high efficiency light-assisted water treatment. Catalysis Science and Technology, 2020, 10, 1299-1310.	4.1	42
40	Sn-doped and porogen-modified TiO2 photocatalyst for solar light elimination of sulfure diethyle as a model for chemical warfare agent. Applied Catalysis B: Environmental, 2019, 245, 279-289.	20.2	41
41	Selective solar photodegradation of organopollutant mixtures in water. Solar Energy, 2004, 77, 553-558.	6.1	38
42	Effect of compressive stress inducing a band gap narrowing on the photoinduced activities of sol–gel TiO2 films. Thin Solid Films, 2011, 520, 1147-1154.	1.8	38
43	Preparation of effective TiO2/Bi2O3 photocatalysts for water treatment. Environmental Chemistry Letters, 2016, 14, 387-393.	16.2	38
44	First approach of the selective treatment of water by heterogeneous photocatalysis. Environmental Chemistry Letters, 2004, 2, 5-8.	16.2	37
45	TiO2/ \hat{l}^2 -SiC foam-structured photoreactor for continuous wastewater treatment. Environmental Science and Pollution Research, 2012, 19, 3727-3734.	5.3	37
46	Photocatalytic degradation of indole in UV/TiO2: optimization and modelling using the response surface methodology (RSM). Environmental Chemistry Letters, 2009, 7, 45-49.	16.2	36
47	Degradation of atrazine in aqueous solution with electrophotocatalytic process using TiO2â°'x photoanode. Chemosphere, 2016, 157, 79-88.	8.2	36
48	Heterogeneous photodegradation of Pyrimethanil and its commercial formulation with TiO2 immobilized on SiC foams. Journal of Photochemistry and Photobiology A: Chemistry, 2019, 368, 1-6.	3.9	35
49	The effect of landfill leachate composition on organics and nitrogen removal in an activated sludge system with bentonite additive. Journal of Environmental Management, 2007, 85, 59-68.	7.8	34
50	Fe-Doped TiO2 Supported on HY Zeolite for Solar Photocatalytic Treatment of Dye Pollutants. Catalysts, 2017, 7, 344.	3.5	31
51	Highly robust La1-xTixFeO3 dual catalyst with combined photocatalytic and photo-CWPO activity under visible light for 4-chlorophenol removal in water. Applied Catalysis B: Environmental, 2020, 262, 118310.	20.2	30
52	Leachate detoxification by combination of biological and TiO2-photocatalytic processes. Water Science and Technology, 2006, 53, 181-190.	2.5	29
53	H2S photocatalytic oxidation over WO3/TiO2 Hombikat UV100. Environmental Science and Pollution Research, 2014, 21, 3503-3514.	5.3	29
54	Titanium Dioxide Synthesis by Sol Gel Methods and Evaluation of Their Photocatalytic Activity. Journal of Materials Science Letters, 1999, 18, 97-98.	0.5	26

#	Article	IF	CITATIONS
55	Ta-doped TiO 2 as photocatalyst for UV-A activated elimination of chemical warfare agent simulant. Journal of Catalysis, 2016, 334, 129-141.	6.2	26
56	Synthesis and properties of alumina-hydroxyapatite composites from natural phosphate for phenol removal from water. Colloids and Interface Science Communications, 2019, 31, 100188.	4.1	25
57	Use of oxalate sacrificial compounds to improve the photocatalytic performance of titanium dioxide. Applied Catalysis B: Environmental, 2009, 86, 93-97.	20.2	23
58	Photocatalytic degradation of Rhodamine B dye with TiO2 immobilized on SiC foam using full factorial design. Applied Water Science, 2020, 10, 1.	5.6	22
59	Photo-degradation of butyl parahydroxybenzoate by using TiO2-supported catalyst. Water Science and Technology, 2013, 67, 2141-2147.	2.5	20
60	Alveolar TiO2- \hat{l}^2 -SiC photocatalytic composite foams with tunable properties for water treatment. Catalysis Today, 2019, 328, 235-242.	4.4	20
61	Study of the Adsorption of Dicarboxylic Acids on Titanium Dioxide in Aqueous Solution. Adsorption, 2000, 6, 175-178.	3.0	17
62	TiO2 supported on glass fiber for the photocatalytic degradation of benzamide. Journal of Materials Science Letters, 2000, 19, 683-684.	0.5	16
63	Design and study of a cost-effective solar photoreactor for pesticide removal from water. Water Science and Technology, 2009, 60, 2187-2193.	2.5	16
64	TiO2/Bi2O3 photocatalysts for elimination of water contaminants. Part 1: synthesis of \hat{l}_{\pm} - and \hat{l}^2 -Bi2O3 nanoparticles. Environmental Chemistry Letters, 2015, 13, 327-332.	16.2	16
65	Ti-Modified LaFeO \langle sub \rangle 3 \langle sub \rangle \hat{I}^2 -SiC Alveolar Foams as Immobilized Dual Catalysts with Combined Photo-Fenton and Photocatalytic Activity. ACS Applied Materials & amp; Interfaces, 2020, 12, 57025-57037.	8.0	16
66	A simple procedure to quantitatively assess the photoactivity of titanium dioxide films. Journal of Photochemistry and Photobiology A: Chemistry, 2010, 215, 11-16.	3.9	15
67	Environmental Chemistry for a Sustainable World. Environmental Chemistry for A Sustainable World, 2012, , .	0.5	15
68	Photo-electrocatalytic oxidation of atrazine using sputtured deposited TiO2: WN photoanodes under UV/visible light. Catalysis Today, 2020, 340, 323-333.	4.4	15
69	Synthesis and characterization of TiO2/C nanomaterials: Applications in water treatment. Physica Status Solidi (B): Basic Research, 2015, 252, 2503-2511.	1.5	14
70	Photocatalytic Oxidation of Carbamazepine: Application of an Experimental Design Methodology. Water, Air, and Soil Pollution, 2016, 227, 1.	2.4	14
71	Coating-free TiO2 $@\hat{i}^2$ -SiC alveolar foams as a ready-to-use composite photocatalyst with tunable adsorption properties for water treatment. RSC Advances, 2020, 10, 3817-3825.	3.6	13
72	Environmental photocatalysis and photochemistry for a sustainable world: a big challenge. Environmental Science and Pollution Research, 2017, 24, 12503-12505.	5. 3	12

#	Article	IF	CITATIONS
73	Effect of W doping level on TiO2 on the photocatalytic degradation of Diuron. Water Science and Technology, 2017, 75, 20-27.	2.5	11
74	Removal of atrazine by photoelectrocatalytic process under sunlight using WN-codoped TiO2 photoanode. Journal of Applied Electrochemistry, 2018, 48, 1353-1361.	2.9	11
75	Photocatalytic Degradation of Paraquat Herbicide Using a Fixed Bed Reactor Containing TiO ₂ Nanoparticles Coated onto <i>Î ² -SiC</i> Alveolar Foams. American Journal of Analytical Chemistry, 2019, 10. 171-184.	0.9	11
76	Synergistic effects of C, N, S, Fe-multidoped TiO2 for photocatalytic degradation of methyl orange dye under UV and visible light irradiations. SN Applied Sciences, 2019, 1, 1.	2.9	10
77	Photocatalytic degradation of methylbutandioic acid (MBA) in aqueous TiO2 suspension: influences of MBA adsorption on the solid semi-conductor. Journal of Cleaner Production, 1998, 6, 335-338.	9.3	8
78	Effect of SiN <i>>_{<}</i> > diffusion barrier thickness on the structural properties and photocatalytic activity of TiO ₂ films obtained by sol–gel dip coating and reactive magnetron sputtering. Beilstein Journal of Nanotechnology, 2015, 6, 2039-2045.	2.8	8
79	Photocatalytic degradation of polystyrene nanoplastics in water. A methodological study. Journal of Environmental Chemical Engineering, 2022, 10, 108195.	6.7	8
80	Social chemistry. Environmental Chemistry Letters, 2012, 10, 1-4.	16.2	7
81	Photoelectrocatalytic bleaching of p-nitrosodimethylaniline using Ti/TiO2 nanostructured electrodes deposited by means of a pulsed laser deposition process. Journal of Applied Electrochemistry, 2013, 43, 467-479.	2.9	7
82	Solar Photocatalytic Decolorization and Degradation of Methyl Orange Using Supported TiO2. Journal of Advanced Oxidation Technologies, 2016, 19, .	0.5	7
83	Optimization of the indole photodegradation on supported TiO2: influences of temperature, concentration, TiO2 amount and flow rate. Water Science and Technology, 2008, 58, 549-554.	2.5	5
84	Modified-TiO2 Photocatalyst Supported on \hat{l}^2 -SiC Foams for the Elimination of Gaseous Diethyl Sulfide as an Analog for Chemical Warfare Agent: Towards the Development of a Photoreactor Prototype. Catalysts, 2021, 11, 403.	3.5	5
85	Ti/Cr-Pillared Clay As Photocatalysts For 4-Chlorophenol Removal In Water. Desalination and Water Treatment, 2010, 13, 437-440.	1.0	3
86	Effect of calcium oxalate on the photocatalytic degradation of Orange II on ZnO surface. Applied Nanoscience (Switzerland), 2013, 3, 211-215.	3.1	3
87	A comparative study of the photocatalytic efficiency of metal oxide/hydroxyapatite nanocomposites in the degradation kinetic of ciprofloxacin in water. E3S Web of Conferences, 2020, 150, 02006.	0.5	2
88	Introduction to Environmental Chemistry Letters. Environmental Chemistry Letters, 2003, 1, 1-1.	16.2	1
89	NON LINEAR EIGENVALUE PROBLEMS. Matematica Contemporanea, 2004, 26, .	0.0	1
90	Photocatalytic Degradation of Myclobutanil and Its Commercial Formulation with TiO2 P25 in Slurry and TiO2/ \hat{l}^2 -SiC Foams. Journal of Nanoscience and Nanotechnology, 2020, 20, 5938-5943.	0.9	1

DIDIER ROBERT

#	Article	IF	CITATIONS
91	Upscaling Anodic Synthesis of TiO2 Nanotubes Film as Potential Material for Photoelectrocatalytic Applications: Influence of Electrolyte Overheating and Aging on Nanotube Morphology and Stability. Journal of Photocatalysis, 2020, 1, 43-49.	0.4	0
92	Catalysis in Advanced Oxidation Technologies (AOTs) for Water, Air and Soil Treatment. Catalysts, 2022, 12, 502.	3.5	0
93	Synthesis of new C,N,S,Fe-multidoping nanoparticles with potential photochemical response. Journal of Dispersion Science and Technology, 0, , 1-10.	2.4	0