
Sandeep Rana

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/384048/publications.pdf Version: 2024-02-01

SANDEED RANA

#	Article	IF	CITATIONS
1	Chemically induced degradation of CDK9 by a proteolysis targeting chimera (PROTAC). Chemical Communications, 2017, 53, 7577-7580.	4.1	167
2	Cyclin Dependent Kinase 9 Inhibitors for Cancer Therapy. Journal of Medicinal Chemistry, 2016, 59, 8667-8684.	6.4	121
3	Selective degradation of CDK6 by a palbociclib based PROTAC. Bioorganic and Medicinal Chemistry Letters, 2019, 29, 1375-1379.	2.2	95
4	Small Molecule Adenosine 5′-Monophosphate Activated Protein Kinase (AMPK) Modulators and Human Diseases. Journal of Medicinal Chemistry, 2015, 58, 2-29.	6.4	51
5	Micellar formulation of indocyanine green for phototherapy of melanoma. Journal of Controlled Release, 2015, 220, 130-140.	9.9	49
6	Face selective reduction of the exocyclic double bond in isatin derived spirocyclic lactones. Organic and Biomolecular Chemistry, 2013, 11, 244-247.	2.8	32
7	Aminopyrazole based CDK9 PROTAC sensitizes pancreatic cancer cells to venetoclax. Bioorganic and Medicinal Chemistry Letters, 2021, 43, 128061.	2.2	30
8	Synthesis and SAR studies of novel 1,2,4-oxadiazole-sulfonamide based compounds as potential anticancer agents for colorectal cancer therapy. Bioorganic Chemistry, 2020, 98, 103754.	4.1	29
9	PIK3C3 Inhibition Promotes Sensitivity to Colon Cancer Therapy by Inhibiting Cancer Stem Cells. Cancers, 2021, 13, 2168.	3.7	28
10	Characterization of CDK(5) inhibitor, 20-223 (aka CP668863) for colorectal cancer therapy. Oncotarget, 2018, 9, 5216-5232.	1.8	22
11	CDK5 Inhibitor Downregulates Mcl-1 and Sensitizes Pancreatic Cancer Cell Lines to Navitoclax. Molecular Pharmacology, 2019, 96, 419-429.	2.3	21
12	Synthesis, Anticancer Evaluation and DNAâ€Binding Spectroscopic Insights of Quinolineâ€Based 1,3,4â€Oxadiazoleâ€1,2,3â€ŧriazole Conjugates. ChemistrySelect, 2019, 4, 12176-12182.	1.5	19
13	Development of 1-((1,4- <i>trans</i>)-4-Aryloxycyclohexyl)-3-arylurea Activators of Heme-Regulated Inhibitor as Selective Activators of the Eukaryotic Initiation Factor 2 Alpha (eIF2α) Phosphorylation Arm of the Integrated Endoplasmic Reticulum Stress Response. Journal of Medicinal Chemistry, 2017, 60, 5392-5406.	6.4	17
14	A mitotic CDK5-PP4 phospho-signaling cascade primes 53BP1 for DNA repair in G1. Nature Communications, 2019, 10, 4252.	12.8	17
15	Inhibitors, PROTACs and Molecular Glues as Diverse Therapeutic Modalities to Target Cyclin-Dependent Kinase. Cancers, 2021, 13, 5506.	3.7	17
16	Synthesis of aminopyrazole analogs and their evaluation as CDK inhibitors for cancer therapy. Bioorganic and Medicinal Chemistry Letters, 2018, 28, 3736-3740.	2.2	16
17	Recent Advances in Cancer Drug Development: Targeting Induced Myeloid Cell Leukemia-1 (Mcl-1) Differentiation Protein. Current Medicinal Chemistry, 2018, 24, 4488-4514.	2.4	13
18	Selective killing of homologous recombination-deficient cancer cell lines by inhibitors of the RPA:RAD52 protein-protein interaction. PLoS ONE, 2021, 16, e0248941.	2.5	13

SANDEEP RANA

#	Article	IF	CITATIONS
19	Chemical Genetic Screens Identify Kinase Inhibitor Combinations that Target Anti-Apoptotic Proteins for Cancer Therapy. ACS Chemical Biology, 2018, 13, 1148-1152.	3.4	10
20	Symbiotic prodrugs (SymProDs) dual targeting of NFkappaB and CDK. Chemical Biology and Drug Design, 2020, 96, 773-784.	3.2	10
21	EHD1 and RUSC2 Control Basal Epidermal Growth Factor Receptor Cell Surface Expression and Recycling. Molecular and Cellular Biology, 2020, 40, .	2.3	8
22	Stapling proteins in the RELA complex inhibits TNFα-induced nuclear translocation of RELA. RSC Chemical Biology, 2022, 3, 32-36.	4.1	6
23	A quinoxaline urea analog uncouples inflammatory and pro-survival functions of IKKβ. Immunology Letters, 2015, 168, 319-324.	2.5	5
24	Spirocyclic dimer SpiD7 activates the unfolded protein response to selectively inhibit growth and induce apoptosis of cancer cells. Journal of Biological Chemistry, 2022, 298, 101890.	3.4	5
25	Dimers of isatin derived α-methylene-γ-butyrolactone as potent anti-cancer agents. Bioorganic and Medicinal Chemistry Letters, 2022, 65, 128713.	2.2	5
26	Small molecule induced polymerization of BCL6 facilitates SIAH1 mediated degradation. Signal Transduction and Targeted Therapy, 2021, 6, 142.	17.1	3
27	Small-molecule IKKÎ ² activation modulator (IKAM) targets MAP3K1 and inhibits pancreatic tumor growth. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2115071119.	7.1	3
28	A Novel Spirocyclic Dimer (36-286) Targeting the NF-Kappa B Pathway Displays Potent Anti-Tumor Properties in Chronic Lymphocytic Leukemia. Blood, 2021, 138, 1186-1186.	1.4	0