Faisal Abnisa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3840452/publications.pdf

Version: 2024-02-01

218677 128289 5,567 61 26 60 h-index citations g-index papers 62 62 62 5769 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	A review on pyrolysis of plastic wastes. Energy Conversion and Management, 2016, 115, 308-326.	9.2	1,296
2	A review on co-pyrolysis of biomass: An optional technique to obtain a high-grade pyrolysis oil. Energy Conversion and Management, 2014, 87, 71-85.	9.2	626
3	Review on magnetic nanoparticles for magnetic nanofluid hyperthermia application. Materials and Design, 2017, 123, 174-196.	7.0	410
4	A review on production of metal organic frameworks (MOF) for CO2 adsorption. Science of the Total Environment, 2020, 707, 135090.	8.0	385
5	Utilization possibilities of palm shell as a source of biomass energy in Malaysia by producing bio-oil in pyrolysis process. Biomass and Bioenergy, 2011, 35, 1863-1872.	5.7	226
6	A review of torrefaction of oil palm solid wastes for biofuel production. Energy Conversion and Management, 2017, 149, 101-120.	9.2	213
7	Utilization of oil palm tree residues to produce bio-oil and bio-char via pyrolysis. Energy Conversion and Management, 2013, 76, 1073-1082.	9.2	178
8	Characterization of Bio-oil and Bio-char from Pyrolysis of Palm Oil Wastes. Bioenergy Research, 2013, 6, 830-840.	3.9	175
9	Energy recovery from pyrolysis of plastic waste: Study on non-recycled plastics (NRP) data as the real measure of plastic waste. Energy Conversion and Management, 2017, 148, 925-934.	9.2	162
10	Optimization and characterization studies on bio-oil production from palm shell by pyrolysis using response surface methodology. Biomass and Bioenergy, 2011, 35, 3604-3616.	5.7	153
11	Production of microporous palm shell based activated carbon for methane adsorption: Modeling and optimization using response surface methodology. Chemical Engineering Research and Design, 2012, 90, 776-784.	5.6	140
12	A review on reactivity and stability of heterogeneous metal catalysts for deoxygenation of bio-oil model compounds. Journal of Industrial and Engineering Chemistry, 2017, 56, 1-34.	5.8	132
13	Co-pyrolysis of palm shell and polystyrene waste mixtures to synthesis liquid fuel. Fuel, 2013, 108, 311-318.	6.4	130
14	A review on reaction mechanisms of metal-catalyzed deoxygenation process in bio-oil model compounds. Applied Catalysis A: General, 2017, 541, 87-106.	4.3	115
15	A review of the enzymatic hydroesterification process for biodiesel production. Renewable and Sustainable Energy Reviews, 2016, 61, 245-257.	16.4	108
16	A technical review on semi-continuous and continuous pyrolysis process of biomass to bio-oil. Journal of Analytical and Applied Pyrolysis, 2018, 131, 52-75.	5.5	103
17	Optimization of fuel recovery through the stepwise co-pyrolysis of palm shell and scrap tire. Energy Conversion and Management, 2015, 99, 334-345.	9.2	95
18	A review on deoxygenation of triglycerides for jet fuel range hydrocarbons. Journal of Analytical and Applied Pyrolysis, 2019, 140, 1-24.	5.5	89

#	Article	IF	Citations
19	Pyrolysis of mixtures of palm shell and polystyrene: An optional method to produce a highâ€grade of pyrolysis oil. Environmental Progress and Sustainable Energy, 2014, 33, 1026-1033.	2.3	77
20	Removal of lead by solar-photovoltaic electrocoagulation using novel perforated zinc electrode. Journal of Cleaner Production, 2017, 147, 206-216.	9.3	63
21	Atmospheric hydrodeoxygenation of bio-oil oxygenated model compounds: A review. Journal of Analytical and Applied Pyrolysis, 2018, 133, 117-127.	5. 5	62
22	Polycaprolactone-coated superparamagnetic iron oxide nanoparticles for in vitro magnetic hyperthermia therapy of cancer. European Polymer Journal, 2020, 133, 109789.	5.4	61
23	A review of recent developments on kinetics parameters for glycerol electrochemical conversion – A by-product of biodiesel. Science of the Total Environment, 2020, 705, 135137.	8.0	57
24	Recovery of Liquid Fuel from the Aqueous Phase of Pyrolysis Oil Using Catalytic Conversion. Energy & E	5.1	35
25	Liquefaction of natural rubber to liquid fuels via hydrous pyrolysis. Fuel, 2018, 218, 227-235.	6.4	32
26	Recovery of liquid fuel from fossil-based solid wastes via pyrolysis technique: A review. Journal of Environmental Chemical Engineering, 2021, 9, 106593.	6.7	31
27	Potential use of natural rubber to produce liquid fuels using hydrous pyrolysis – a review. RSC Advances, 2016, 6, 68906-68921.	3.6	28
28	A review of recent progress on electrocatalysts toward efficient glycerol electrooxidation. Reviews in Chemical Engineering, 2021, 37, 779-811.	4.4	28
29	Synergistic interaction of metal–acid sites for phenol hydrodeoxygenation over bifunctional Ag/TiO2 nanocatalyst. Chinese Journal of Chemical Engineering, 2019, 27, 349-361.	3. 5	22
30	Methane decomposition with a minimal catalyst: An optimization study with response surface methodology over Ni/SiO2 nanocatalyst. International Journal of Hydrogen Energy, 2020, 45, 14383-14395.	7.1	21
31	Experimental and modelling study of the torrefaction of empty fruit bunches as a potential fuel for palm oil mill boilers. Biomass and Bioenergy, 2020, 136, 105530.	5.7	20
32	Novel helical screw-fluidized bed reactor for bio-oil production in slow-pyrolysis mode: A preliminary study. Journal of Analytical and Applied Pyrolysis, 2019, 142, 104605.	5. 5	19
33	The Yield Prediction of Synthetic Fuel Production from Pyrolysis of Plastic Waste by Levenberg–Marquardt Approach in Feedforward Neural Networks Model. Polymers, 2019, 11, 1853.	4. 5	19
34	Performance of eggshells powder as an adsorbent for adsorption of hexavalent chromium and cadmium from wastewater. SN Applied Sciences, 2020, 2, 1.	2.9	19
35	Individual torrefaction parameter enhances characteristics of torrefied empty fruit bunches. Biomass Conversion and Biorefinery, 2021, 11, 461-472.	4.6	18
36	Effect of temperature and feed rate on pyrolysis oil produced via helical screw fluidized bed reactor. Korean Journal of Chemical Engineering, 2021, 38, 1797-1809.	2.7	17

#	Article	IF	Citations
37	Optimization of palm shell pyrolysis parameters in helical screw fluidized bed reactor: Effect of particle size, pyrolysis time and vapor residence time. Cleaner Engineering and Technology, 2021, 4, 100174.	4.0	17
38	Synthesis and in-vitro characterization of superparamagnetic iron oxide nanoparticles using a sole precursor for hyperthermia therapy. Materials Research Bulletin, 2020, 132, 110975.	5.2	14
39	Comparative study of catalytic performance and degradation kinetics of biodiesels produced using heterogeneous catalysts from kaolinite. Journal of Environmental Chemical Engineering, 2021, 9, 105569.	6.7	14
40	A comprehensive study on torrefaction of empty fruit bunches: Characterization of solid, liquid and gas products. Energy, 2021, 230, 120877.	8.8	14
41	Palm oil hydrodeoxygenation into green diesel over NiO/NbOPO4 catalyst: A novel approach of synthesizing NbOPO4 from NbCl5. Journal of Cleaner Production, 2022, 354, 131704.	9.3	13
42	Atmospheric hydrodeoxygenation of phenol as pyrolyticâ€oil model compound for hydrocarbon production using Ag/TiO ₂ catalyst. Asia-Pacific Journal of Chemical Engineering, 2019, 14, e2293.	1.5	12
43	Synthesis of valuable intermediate products from natural rubber under supercritical alcohol conditions. Journal of Analytical and Applied Pyrolysis, 2019, 139, 196-204.	5.5	12
44	Gas-phase hydrodeoxygenation of phenol over Zn/SiO2 catalysts: Effects of zinc load, temperature, weight hourly space velocity, and H2 volumetric flow rate. Biomass and Bioenergy, 2020, 138, 105556.	5.7	12
45	Investigating the relevance of Environmental Kuznets curve hypothesis in Saudi Arabia: towards energy efficiency and minimal carbon dioxide emission. Clean Technologies and Environmental Policy, 2022, 24, 1285-1300.	4.1	11
46	Delayed volatiles release phenomenon at higher temperature in TGA via sample encapsulation technique. Fuel, 2018, 234, 422-429.	6.4	10
47	Investigating the electrocatalytic oxidation of glycerol on simultaneous nitrogen- and fluorine-doped on activated carbon black composite. Diamond and Related Materials, 2020, 101, 107626.	3.9	9
48	Temperatureâ€programmed reduction of silver(I) oxide using a titaniaâ€supported silver catalyst under a H 2 atmosphere. Journal of the Chinese Chemical Society, 2019, 66, 1443-1455.	1.4	7
49	Synthesis, characterization and in vitro analysis of superparamagnetic iron oxide nanoparticles for targeted hyperthermia therapy. Chemical Papers, 2021, 75, 669-679.	2.2	7
50	Preparation of magnetized iron oxide grafted on graphene oxide for hyperthermia application. Reviews in Chemical Engineering, 2022, 38, 569-601.	4.4	7
51	Synthesis of Highly Stable Superparamagnetic Iron Oxide Nanoparticles Under Mild Alkaline Reagents and Anaerobic Condition. Nanoscience and Nanotechnology Letters, 2019, 11, 985-990.	0.4	6
52	Investigation on Synthesis of Trimethylolpropane (TMP) Ester from Non-edible Oil. Bulletin of Chemical Reaction Engineering and Catalysis, 2020, 15, 808-817.	1,1	6
53	Rational design of PEGylated magnetite grafted on graphene oxide with effective heating efficiency for magnetic hyperthermia application. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 619, 126545.	4.7	5
54	Kinetic parameters for glycerol electrooxidation over nitrogen- and fluorine-doped composite carbon: Dynamic electrochemical impedance spectroscopy analysis based. Journal of Electroanalytical Chemistry, 2021, 883, 115043.	3.8	4

#	Article	IF	CITATION
55	Optimizing the use of biomass waste through co-pyrolysis. Inform, 2017, 28, 16-19.	0.1	4
56	Efficient hydrogen production by microwave-assisted catalysis for glycerol-water solutions via NiO/zeolite-CaO catalyst. South African Journal of Chemical Engineering, 2022, 41, 43-50.	2.4	4
57	Catalyst Characteristics and Performance of Silica-Supported Zinc for Hydrodeoxygenation of Phenol. Energies, 2020, 13, 2802.	3.1	3
58	Harvesting Electricity from CO2 Emission: Opportunities, Challenges and Future Prospects. International Journal of Precision Engineering and Manufacturing - Green Technology, 2021, 8, 1061-1081.	4.9	3
59	Pyrolysis of palm kernel shell using screw-assisted fluidization: effect of heating rate. Brazilian Journal of Chemical Engineering, 0, , $1\cdot$	1.3	3
60	Activated carbon-based electrodes for two-steps catalytic/ electrocatalytic reduction of glycerol in Amberlyst-15 mediator. Chemosphere, 2022, , 133949.	8.2	3
61	Glycerol Electrocatalytic Reduction Using an Activated Carbon Composite Electrode: Understanding the Reaction Mechanisms and an Optimization Study. Frontiers in Chemistry, 2022, 10, 845614.	3.6	2