Jiazhi Hu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3840281/publications.pdf

Version: 2024-02-01

430874 501196 2,119 29 18 28 citations h-index g-index papers 29 29 29 3124 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	PEM-seq comprehensively quantifies DNA repair outcomes during gene-editing and DSB repair. STAR Protocols, 2022, 3, 101088.	1.2	17
2	Cas9 exo-endonuclease eliminates chromosomal translocations during genome editing. Nature Communications, 2022, 13, 1204.	12.8	40
3	Câ€ŧerminal deletionâ€induced condensation sequesters AID from IgH targets in immunodeficiency. EMBO Journal, 2022, 41, e109324.	7.8	5
4	FACT interacts with Set3 HDAC and fine-tunes <i>GAL1</i> transcription in response to environmental stimulation. Nucleic Acids Research, 2021, 49, 5502-5519.	14.5	8
5	Transcription shapes DNA replication initiation to preserve genome integrity. Genome Biology, 2021, 22, 176.	8.8	20
6	In-depth assessment of the PAM compatibility and editing activities of Cas9 variants. Nucleic Acids Research, 2021, 49, 8785-8795.	14.5	32
7	Global detection of DNA repair outcomes induced by CRISPR–Cas9. Nucleic Acids Research, 2021, 49, 8732-8742.	14.5	52
8	Improving the efficiency of CRISPR-Cas12a-based genome editing with site-specific covalent Cas12a-crRNA conjugates. Molecular Cell, 2021, 81, 4747-4756.e7.	9.7	26
9	RAG2 abolishes RAG1 aggregation to facilitate V(D)J recombination. Cell Reports, 2021, 37, 109824.	6.4	14
10	The Deubiquitinase USP38 Promotes NHEJ Repair through Regulation of HDAC1 Activity and Regulates Cancer Cell Response to Genotoxic Insults. Cancer Research, 2020, 80, 719-731.	0.9	24
11	Structural insight into the assembly and conformational activation of human origin recognition complex. Cell Discovery, 2020, 6, 88.	6.7	3
12	ERCC6L2 promotes DNA orientation-specific recombination in mammalian cells. Cell Research, 2020, 30, 732-744.	12.0	41
13	REV7 is required for processing AID initiated DNA lesions in activated B cells. Nature Communications, 2020, 11, 2812.	12.8	9
14	Optimizing genome editing strategy by primer-extension-mediated sequencing. Cell Discovery, 2019, 5, 18.	6.7	61
15	Improved HTGTS for CRISPR/Cas9 Off-target Detection. Bio-protocol, 2019, 9, e3229.	0.4	6
16	Sap1 is a replication-initiation factor essential for the assembly of pre-replicative complex in the fission yeast Schizosaccharomyces pombe. Journal of Biological Chemistry, 2017, 292, 6056-6075.	3.4	9
17	Direct Visualization of RNA-DNA Primer Removal from Okazaki Fragments Provides Support for Flap Cleavage and Exonucleolytic Pathways in Eukaryotic Cells. Journal of Biological Chemistry, 2017, 292, 4777-4788.	3.4	40
18	CRISPR/Cas9-mediated targeted chromosome elimination. Genome Biology, 2017, 18, 224.	8.8	142

#	Article	IF	CITATIONS
19	Detecting DNA double-stranded breaks in mammalian genomes by linear amplification–mediated high-throughput genome-wide translocation sequencing. Nature Protocols, 2016, 11, 853-871.	12.0	213
20	Orientation-specific RAG activity in chromosomal loop domains contributes to <i>Tcrd</i> V(D)J recombination during T cell development. Journal of Experimental Medicine, 2016, 213, 1921-1936.	8.5	38
21	Highly sensitive and unbiased approach for elucidating antibody repertoires. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 7846-7851.	7.1	77
22	Mechanisms of Recurrent Chromosomal Translocations. , 2015, , 27-51.		0
23	Chromosomal Loop Domains Direct the Recombination of Antigen Receptor Genes. Cell, 2015, 163, 947-959.	28.9	140
24	Orientation-specific joining of AID-initiated DNA breaks promotes antibody class switching. Nature, 2015, 525, 134-139.	27.8	93
25	Genome-wide detection of DNA double-stranded breaks induced by engineered nucleases. Nature Biotechnology, 2015, 33, 179-186.	17.5	590
26	Developmental propagation of $V(D)J$ recombination-associated DNA breaks and translocations in mature B cells via dicentric chromosomes. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 10269-10274.	7.1	32
27	Convergent Transcription at Intragenic Super-Enhancers Targets AID-Initiated Genomic Instability. Cell, 2014, 159, 1538-1548.	28.9	221
28	Mechanisms That Can Promote Peripheral B-cell Lymphoma in ATM-Deficient Mice. Cancer Immunology Research, 2014, 2, 857-866.	3.4	17
29	The Intra-S Phase Checkpoint Targets Dna2 to Prevent Stalled Replication Forks from Reversing. Cell, 2012, 149, 1221-1232.	28.9	149