
Xi-Guang Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/384017/publications.pdf Version: 2024-02-01

XI-CHANC CHEN

#	Article	IF	CITATIONS
1	Chemical characteristics of O-carboxymethyl chitosans related to the preparation conditions. Carbohydrate Polymers, 2003, 53, 355-359.	5.1	677
2	Effect of MW and concentration of chitosan on antibacterial activity of Escherichia coli. Carbohydrate Polymers, 2006, 64, 60-65.	5.1	406
3	Antibacterial mechanism of chitosan microspheres in a solid dispersing system against E. coli. Colloids and Surfaces B: Biointerfaces, 2008, 65, 197-202.	2.5	250
4	The effect of carboxymethyl-chitosan on proliferation and collagen secretion of normal and keloid skin fibroblasts. Biomaterials, 2002, 23, 4609-4614.	5.7	208
5	Chitosan/o-carboxymethyl chitosan nanoparticles for efficient and safe oral anticancer drug delivery: In vitro and in vivo evaluation. International Journal of Pharmaceutics, 2013, 457, 158-167.	2.6	205
6	Effect of molecular weight and degree of chitosan deacetylation on the preparation and characteristics of chitosan thermosensitive hydrogel as a delivery system. Carbohydrate Polymers, 2008, 73, 265-273.	5.1	190
7	Linolenic Acid-Modified Chitosan for Formation of Self-Assembled Nanoparticles. Journal of Agricultural and Food Chemistry, 2005, 53, 437-441.	2.4	162
8	Preparation of composite hydroxybutyl chitosan sponge and its role in promoting wound healing. Carbohydrate Polymers, 2018, 184, 154-163.	5.1	159
9	Research status of self-healing hydrogel for wound management: A review. International Journal of Biological Macromolecules, 2020, 164, 2108-2123.	3.6	151
10	O/W Emulsification for the Self-Aggregation and Nanoparticle Formation of Linoleic AcidModified Chitosan in the Aqueous System. Journal of Agricultural and Food Chemistry, 2003, 51, 3135-3139.	2.4	150
11	A Peptideâ€Network Weaved Nanoplatform with Tumor Microenvironment Responsiveness and Deep Tissue Penetration Capability for Cancer Therapy. Advanced Materials, 2015, 27, 5034-5042.	11.1	138
12	Advances and applications of chitosan-based nanomaterials as oral delivery carriers: A review. International Journal of Biological Macromolecules, 2020, 154, 433-445.	3.6	119
13	Surface charge effect on mucoadhesion of chitosan based nanogels for local anti-colorectal cancer drug delivery. Colloids and Surfaces B: Biointerfaces, 2015, 128, 439-447.	2.5	106
14	Construction of physical-crosslink chitosan/PVA double-network hydrogel with surface mineralization for bone repair. Carbohydrate Polymers, 2019, 224, 115176.	5.1	100
15	Mechanism of surface charge triggered intestinal epithelial tight junction opening upon chitosan nanoparticles for insulin oral delivery. Carbohydrate Polymers, 2017, 157, 596-602.	5.1	87
16	The toughness chitosan-PVA double network hydrogel based on alkali solution system and hydrogen bonding for tissue engineering applications. International Journal of Biological Macromolecules, 2020, 146, 99-109.	3.6	87
17	Preparation and biocompatibility of chitosan microcarriers as biomaterial. Biochemical Engineering Journal, 2006, 27, 269-274.	1.8	84
18	Positive/negative surface charge of chitosan based nanogels and its potential influence on oral insulin delivery. Carbohydrate Polymers, 2016, 136, 867-874.	5.1	83

#	Article	IF	CITATIONS
19	Multifunctional quercetin conjugated chitosan nano-micelles with P-gp inhibition and permeation enhancement of anticancer drug. Carbohydrate Polymers, 2019, 203, 10-18.	5.1	83
20	Chitosan based nanoparticles as protein carriers for efficient oral antigen delivery. International Journal of Biological Macromolecules, 2016, 91, 716-723.	3.6	80
21	Chitosan/Diatomâ€Biosilica Aerogel with Controlled Porous Structure for Rapid Hemostasis. Advanced Healthcare Materials, 2020, 9, e2000951.	3.9	80
22	Recent trends on burn wound care: hydrogel dressings and scaffolds. Biomaterials Science, 2021, 9, 4523-4540.	2.6	80
23	Molecular Affinity and Permeability of Different Molecular Weight Chitosan Membranes. Journal of Agricultural and Food Chemistry, 2002, 50, 5915-5918.	2.4	79
24	Nanoparticles/thermosensitive hydrogel reinforced with chitin whiskers as a wound dressing for treating chronic wounds. Journal of Materials Chemistry B, 2017, 5, 3172-3185.	2.9	78
25	Enhanced transdermal lymphatic delivery of doxorubicin via hyaluronic acid based transfersomes/microneedle complex for tumor metastasis therapy. International Journal of Biological Macromolecules, 2019, 125, 9-16.	3.6	75
26	Immobilization of Coacervate Microcapsules in Multilayer Sodium Alginate Beads for Efficient Oral Anticancer Drug Delivery. Biomacromolecules, 2014, 15, 985-996.	2.6	74
27	Biomaterials based on N,N,N-trimethyl chitosan fibers in wound dressing applications. International Journal of Biological Macromolecules, 2016, 89, 471-476.	3.6	73
28	Construction of hyaluronic acid noisome as functional transdermal nanocarrier for tumor therapy. Carbohydrate Polymers, 2013, 94, 634-641.	5.1	70
29	A novel pH-responsive quaternary ammonium chitosan-liposome nanoparticles for periodontal treatment. International Journal of Biological Macromolecules, 2019, 129, 1113-1119.	3.6	69
30	Tumor Microenvironmental pH and Enzyme Dual Responsive Polymer-Liposomes for Synergistic Treatment of Cancer Immuno-Chemotherapy. Biomacromolecules, 2019, 20, 882-892.	2.6	68
31	Study on poly(vinyl alcohol)/carboxymethyl-chitosan blend film as local drug delivery system. Journal of Materials Science: Materials in Medicine, 2007, 18, 1125-1133.	1.7	64
32	Mechanically and functionally strengthened tissue adhesive of chitin whisker complexed chitosan/dextran derivatives based hydrogel. Carbohydrate Polymers, 2020, 237, 116138.	5.1	64
33	Preparation and antibacterial activity of chitosan microshperes in a solid dispersing system. Frontiers of Materials Science in China, 2008, 2, 214-220.	0.5	60
34	Preparation of biocompatible chitosan grafted poly(lactic acid) nanoparticles. International Journal of Biological Macromolecules, 2012, 51, 221-227.	3.6	60
35	Mussel-inspired antibacterial polydopamine/chitosan/temperature-responsive hydrogels for rapid hemostasis. International Journal of Biological Macromolecules, 2019, 138, 321-333.	3.6	60
36	Improving the osteogenesis of rat mesenchymal stem cells by chitosan-based-microRNA nanoparticles. Carbohydrate Polymers, 2016, 138, 49-58.	5.1	59

#	Article	IF	CITATIONS
37	Transport mechanism of doxorubicin loaded chitosan based nanogels across intestinal epithelium. European Journal of Pharmaceutics and Biopharmaceutics, 2014, 87, 197-207.	2.0	55
38	In situ controlled release of stromal cell-derived factor-11± and antimiR-138 for on-demand cranial bone regeneration. Carbohydrate Polymers, 2018, 182, 215-224.	5.1	54
39	Inducing sustained release and improving oral bioavailability of curcumin via chitosan derivatives-coated liposomes. International Journal of Biological Macromolecules, 2018, 120, 702-710.	3.6	54
40	Multifunctional chitosan/dopamine/diatom-biosilica composite beads for rapid blood coagulation. Carbohydrate Polymers, 2018, 200, 6-14.	5.1	53
41	Aggregation of hydrophobically modified chitosan in solution and at the air–water interface. Journal of Applied Polymer Science, 2006, 102, 1968-1973.	1.3	52
42	Development and application of fish scale wastes as versatile natural biomaterials. Chemical Engineering Journal, 2022, 428, 131102.	6.6	52
43	Glucose-conjugated chitosan nanoparticles for targeted drug delivery and their specific interaction with tumor cells. Frontiers of Materials Science, 2014, 8, 363-372.	1.1	50
44	Chitosanâ€Based Thermo/pH Double Sensitive Hydrogel for Controlled Drug Delivery. Macromolecular Bioscience, 2018, 18, 1700305.	2.1	50
45	In vitro and in vivo evaluation of chitosan microspheres with different deacetylation degree as potential embolic agent. Carbohydrate Polymers, 2014, 113, 304-313.	5.1	49
46	Enhanced transdermal lymphatic drug delivery of hyaluronic acid modified transfersomes for tumor metastasis therapy. Chemical Communications, 2015, 51, 1453-1456.	2.2	46
47	Biosynthetic calcium-doped biosilica with multiple hemostatic properties for hemorrhage control. Journal of Materials Chemistry B, 2018, 6, 7834-7841.	2.9	44
48	Hydroxybutyl chitosan/diatom-biosilica composite sponge for hemorrhage control. Carbohydrate Polymers, 2020, 236, 116051.	5.1	43
49	Mussel-inspired adhesive and polypeptide-based antibacterial thermo-sensitive hydroxybutyl chitosan hydrogel as BMSCs 3D culture matrix for wound healing. Carbohydrate Polymers, 2021, 261, 117878.	5.1	43
50	Design and investigation of nanoemulsified carrier based on amphiphile-modified hyaluronic acid. Carbohydrate Polymers, 2011, 83, 462-469.	5.1	42
51	pH-sensitive amphiphilic chitosan-quercetin conjugate for intracellular delivery of doxorubicin enhancement. Carbohydrate Polymers, 2019, 223, 115072.	5.1	42
52	A thermosensitive hydroxybutyl chitosan hydrogel as a potential co-delivery matrix for drugs on keloid inhibition. Journal of Materials Chemistry B, 2016, 4, 3936-3944.	2.9	40
53	pH-Activated nanoparticles with targeting for the treatment of oral plaque biofilm. Journal of Materials Chemistry B, 2018, 6, 586-592.	2.9	40
54	Multilayer sodium alginate beads with porous core containing chitosan based nanoparticles for oral delivery of anticancer drug. International Journal of Biological Macromolecules, 2016, 85, 1-8.	3.6	38

#	Article	IF	CITATIONS
55	The influence of solvent formulations on thermosensitive hydroxybutyl chitosan hydrogel as a potential delivery matrix for cell therapy. Carbohydrate Polymers, 2017, 170, 80-88.	5.1	38
56	A surface charge dependent enhanced Th1 antigen-specific immune response in lymph nodes by transfersome-based nanovaccine-loaded dissolving microneedle-assisted transdermal immunization. Journal of Materials Chemistry B, 2019, 7, 4854-4866.	2.9	38
57	Self-assembled nanoparticles based on linoleic-acid modified carboxymethyl-chitosan as carrier of adriamycin (ADR). Current Applied Physics, 2007, 7, e125-e129.	1.1	37
58	Dynamic disordering of liposomal cocktails and the spatio-temporal favorable release of cargoes to circumvent drug resistance. Biomaterials, 2014, 35, 3406-3415.	5.7	37
59	Surface fluid-swellable chitosan fiber as the wound dressing material. Carbohydrate Polymers, 2016, 136, 860-866.	5.1	37
60	Tough chitosan hydrogel based on purified regeneration and alkaline solvent as biomaterials for tissue engineering applications. International Journal of Biological Macromolecules, 2017, 104, 224-231.	3.6	37
61	Preparation, characterization, and antibacterial activity of oleic acid-grafted chitosan oligosaccharide nanoparticles. Frontiers of Biology in China: Selected Publications From Chinese Universities, 2009, 4, 321-327.	0.2	36
62	Reverse immune suppressive microenvironment in tumor draining lymph nodes to enhance anti-PD1 immunotherapy via nanovaccine complexed microneedle. Nano Research, 2020, 13, 1509-1518.	5.8	36
63	Nano-polyplex based on oleoyl-carboxymethy-chitosan (OCMCS) and hyaluronic acid for oral gene vaccine delivery. Colloids and Surfaces B: Biointerfaces, 2016, 145, 492-501.	2.5	35
64	Construction of multilayer alginate hydrogel beads for oral delivery of probiotics cells. International Journal of Biological Macromolecules, 2017, 105, 924-930.	3.6	35
65	A thermosensitive RGD-modified hydroxybutyl chitosan hydrogel as a 3D scaffold for BMSCs culture on keloid treatment. International Journal of Biological Macromolecules, 2019, 125, 78-86.	3.6	35
66	Investigation of gelling behavior of thiolated chitosan in alkaline condition and its application in stent coating. Carbohydrate Polymers, 2016, 136, 307-315.	5.1	34
67	Different chemical groups modification on the surface of chitosan nonwoven dressing and the hemostatic properties. International Journal of Biological Macromolecules, 2018, 107, 463-469.	3.6	34
68	Applications of chitosan-based biomaterials: a focus on dependent antimicrobial properties. Marine Life Science and Technology, 2020, 2, 398-413.	1.8	34
69	Collagen-based biocomposites inspired by bone hierarchical structures for advanced bone regeneration: ongoing research and perspectives. Biomaterials Science, 2022, 10, 318-353.	2.6	34
70	Preparation and characterization of a novel thermosensitive nanoparticle for drug delivery in combined hyperthermia and chemotherapy. Journal of Materials Chemistry B, 2013, 1, 6442.	2.9	33
71	Investigation of acetylated chitosan microspheres as potential chemoembolic agents. Colloids and Surfaces B: Biointerfaces, 2014, 123, 387-394.	2.5	32
72	Temperature responsive self-assembled hydroxybutyl chitosan nanohydrogel based on homogeneous reaction for smart window. Carbohydrate Polymers, 2020, 229, 115557.	5.1	32

#	Article	IF	CITATIONS
73	Hydroxybutyl Chitosan Centered Biocomposites for Potential Curative Applications: A Critical Review. Biomacromolecules, 2020, 21, 1351-1367.	2.6	32
74	Preparation and characterization of chitosan from crab shell (Portunus trituberculatus) by NaOH/urea solution freeze-thaw pretreatment procedure. International Journal of Biological Macromolecules, 2020, 147, 931-936.	3.6	31
75	Thermo/photo dual-crosslinking chitosan-gelatin methacrylate hydrogel with controlled shrinking property for contraction fabrication. Carbohydrate Polymers, 2020, 236, 116067.	5.1	31
76	Chitosanâ€based selfâ€assembled nanomaterials: Their application in drug delivery. View, 2021, 2, 20200069.	2.7	31
77	Molecular structural transformation regulated dynamic disordering of supramolecular vesicles as pH-responsive drug release systems. Journal of Controlled Release, 2014, 173, 140-147.	4.8	30
78	Preparation of H-oleoyl-carboxymethyl-chitosan and the function as a coagulation agent for residual oil in aqueous system. Frontiers of Materials Science in China, 2008, 2, 105-112.	0.5	29
79	Preparation of chitosanâ€based thermosensitive hydrogels for drug delivery. Journal of Applied Polymer Science, 2009, 112, 1509-1515.	1.3	29
80	Improvement of fucoxanthin oral efficacy via vehicles based on gum Arabic, gelatin and alginate hydrogel. Journal of Functional Foods, 2019, 63, 103573.	1.6	29
81	3-D culture of human umbilical vein endothelial cells with reversible thermosensitive hydroxybutyl chitosan hydrogel. Journal of Materials Science: Materials in Medicine, 2013, 24, 1781-1787.	1.7	28
82	Influence of the graft density of hydrophobic groups on thermo-responsive nanoparticles for anti-cancer drugs delivery. Colloids and Surfaces B: Biointerfaces, 2016, 148, 147-156.	2.5	28
83	In vitro and in vivo evaluation of 3D biodegradable thermo/pH sensitive sol-gel reversible hydroxybutyl chitosan hydrogel. Materials Science and Engineering C, 2020, 108, 110419.	3.8	28
84	A composite sponge based on alkylated chitosan and diatom-biosilica for rapid hemostasis. International Journal of Biological Macromolecules, 2021, 182, 2097-2107.	3.6	28
85	The green and stable dissolving system based on KOH/urea for homogeneous chemical modification of chitosan. International Journal of Biological Macromolecules, 2018, 120, 1103-1110.	3.6	27
86	Controlled drug release through carboxymethylâ€chitosan/poly(vinyl alcohol) blend films. Polymer Engineering and Science, 2007, 47, 1373-1379.	1.5	26
87	Systematic investigation of fabrication conditions of nanocarrier based on carboxymethyl chitosan for sustained release of insulin. International Journal of Biological Macromolecules, 2017, 102, 468-474.	3.6	26
88	Transdermal delivery of 10,11-methylenedioxycamptothecin by hyaluronic acid based nanoemulsion for inhibition of keloid fibroblast. Carbohydrate Polymers, 2014, 112, 376-386.	5.1	25
89	Effects of hydroxybutyl chitosan on improving immunocompetence and antibacterial activities. Materials Science and Engineering C, 2019, 105, 110086.	3.8	25
90	Systematic comparisons of dissolving and swelling hyaluronic acid microneedles in transdermal drug delivery. International Journal of Biological Macromolecules, 2021, 191, 783-791.	3.6	25

#	Article	IF	CITATIONS
91	Reinforcement of thermoplastic chitosan hydrogel using chitin whiskers optimized with response surface methodology. Carbohydrate Polymers, 2018, 189, 280-288.	5.1	24
92	Isolation of fucoxanthin from Sargassum thunbergii and preparation of microcapsules based on palm stearin solid lipid core. Frontiers of Materials Science, 2017, 11, 66-74.	1.1	23
93	Thermo-responsive hydroxybutyl chitosan hydrogel as artery intervention embolic agent for hemorrhage control. International Journal of Biological Macromolecules, 2017, 105, 566-574.	3.6	23
94	Nanomaterials as Smart Immunomodulator Delivery System for Enhanced Cancer Therapy. ACS Biomaterials Science and Engineering, 2020, 6, 4774-4798.	2.6	23
95	Molecular weightâ€dependent antifungal activity and action mode of chitosan against <i>Fulvia fulva</i> (cooke) ciffrri. Journal of Applied Polymer Science, 2011, 119, 3127-3135.	1.3	22
96	Preparation and characterization of mucosal adhesive and two-step drug releasing cetirizine-chitosan nanoparticle. Carbohydrate Polymers, 2017, 173, 600-609.	5.1	22
97	Chitosan based nanogels stepwise response to intracellular delivery kinetics for enhanced delivery of doxorubicin. International Journal of Biological Macromolecules, 2017, 104, 157-164.	3.6	22
98	Multilayer micro-dispersing system as oral carriers for co-delivery of doxorubicin hydrochloride and P-gp inhibitor. International Journal of Biological Macromolecules, 2017, 94, 170-180.	3.6	22
99	Development of alginate hydrogel/gum Arabic/gelatin based composite capsules and their application as oral delivery carriers for antioxidant. International Journal of Biological Macromolecules, 2019, 132, 1090-1097.	3.6	22
100	Thrombin immobilized polydopamine–diatom biosilica for effective hemorrhage control. Biomaterials Science, 2021, 9, 4952-4967.	2.6	22
101	Nasal adaptive chitosan-based nano-vehicles for anti-allergic drug delivery. International Journal of Biological Macromolecules, 2019, 135, 1182-1192.	3.6	21
102	Exploiting autophagy-regulative nanomaterials for activation of dendritic cells enables reinforced cancer immunotherapy. Biomaterials, 2022, 282, 121434.	5.7	21
103	Ternary Complex Coacervate of PEG/TA/Gelatin as Reinforced Bioadhesive for Skin Wound Repair. ACS Applied Materials & Interfaces, 2022, 14, 18097-18109.	4.0	21
104	A thermosensitive chitosan-based hydrogel for controlled release of insulin. Frontiers of Materials Science, 2014, 8, 142-149.	1.1	20
105	Optimization of the preparation conditions of thermo-sensitive chitosan hydrogel in heterogeneous reaction using response surface methodology. International Journal of Biological Macromolecules, 2019, 121, 293-300.	3.6	20
106	Quantitative evaluation of the antibacterial effectiveness and efficiency of chitosan considering the effect of neutralization. Carbohydrate Polymers, 2021, 265, 117918.	5.1	20
107	Spatial–temporal event adaptive characteristics of nanocarrier drug delivery in cancer therapy. Journal of Controlled Release, 2013, 172, 281-291.	4.8	19
108	The temperature-responsive hydroxybutyl chitosan hydrogels with polydopamine coating for cell sheet transplantation. International Journal of Biological Macromolecules, 2018, 120, 152-158.	3.6	19

#	Article	IF	CITATIONS
109	Evaluation of structure transformation and biocompatibility of chitosan in alkali/urea dissolution system for its large-scale application. International Journal of Biological Macromolecules, 2020, 154, 758-764.	3.6	19
110	Homogeneous deacetylation and degradation of chitin in NaOH/urea dissolution system. International Journal of Biological Macromolecules, 2021, 189, 391-397.	3.6	19
111	Determination and quantitative analysis of acetoin in beer with headspace sampling-gas chromatography. Food Chemistry, 2009, 112, 1079-1083.	4.2	17
112	Preparation and property of layer-by-layer alginate hydrogel beads based on multi-phase emulsion technique. Journal of Sol-Gel Science and Technology, 2012, 62, 217-226.	1.1	17
113	Chitosan-centered nanosystems as sustained therapeutics for allergic rhinitis intervention: Inhibition of histamine-induced cascades. Journal of Controlled Release, 2021, 335, 422-436.	4.8	17
114	Homogeneous modification of chitin and chitosan based on an alkali/urea soluble system and their applications in biomedical engineering. Green Chemistry, 2021, 23, 9318-9333.	4.6	17
115	Biocompatibility and characteristics of chitosan/cellulose acetate microspheres for drug delivery. Frontiers of Materials Science, 2011, 5, 367-378.	1.1	16
116	Preparation and hydrolytic erosion of differently structured PLGA nanoparticles with chitosan modification. International Journal of Biological Macromolecules, 2013, 54, 174-179.	3.6	15
117	Simply constructed chitosan nanocarriers with precise spatiotemporal control for efficient intracellular drug delivery. Carbohydrate Polymers, 2017, 169, 341-350.	5.1	15
118	The Novel Medical Thermoresponsive Hydrogel Derived from Chitosan. Current Organic Chemistry, 2018, 22, 620-627.	0.9	15
119	Hydroxybutyl chitosan/ oxidized glucomannan self-healing hydrogels as BMSCs-derived exosomes carriers for advanced stretchable wounds. Applied Materials Today, 2022, 26, 101342.	2.3	14
120	Construction and characterization of degradable fish scales for enhancing cellular adhesion and potential using as tissue engineering scaffolds. Materials Science and Engineering C, 2021, 122, 111919.	3.8	13
121	Construction of chitin functional materials based on a "green―alkali/urea solvent and their applications in biomedicine: Recent advance. Applied Materials Today, 2021, 23, 101030.	2.3	13
122	Solubility of Rofecoxib in the Presence of Aqueous Solutions of Glycerol, Propylene Glycol, Ethanol, Span 20, Tween 80, and Sodium Lauryl Sulfate at (298.15, 303.15, and 308.15) K. Journal of Chemical & Engineering Data, 2005, 50, 2061-2064.	1.0	12
123	Drying of micro-encapsulated lactic acid bacteria — Effects of trehalose and immobilization on cell survival and release properties. Journal of Ocean University of China, 2009, 8, 39-44.	0.6	12
124	The effect of carboxymethyl-chitosan nanoparticles on proliferation of keloid fibroblast. Frontiers of Chemistry in China: Selected Publications From Chinese Universities, 2011, 6, 31-37.	0.4	12
125	Controlled release behaviors of chitosan/α, β-glycerophosphate thermo-sensitive hydrogels. Frontiers of Materials Science, 2012, 6, 250-258.	1.1	12
126	Development of part-dissolvable chitosan fibers with surface N-succinylation for wound care dressing. Frontiers of Materials Science, 2015, 9, 272-281.	1.1	12

#	Article	IF	CITATIONS
127	Gastric environment-stable oral nanocarriers for in situ colorectal cancer therapy. International Journal of Biological Macromolecules, 2019, 139, 1035-1045.	3.6	12
128	Temperature sensitive self-assembling hydroxybutyl chitosan nanoparticles with cationic enhancement effect for multi-functional applications. Carbohydrate Polymers, 2021, 254, 117199.	5.1	12
129	Preparation and antithrombotic activity identification of Perinereis aibuhitensis extract: a high temperature and wide pH range stable biological agent. Food and Function, 2017, 8, 3533-3541.	2.1	11
130	A multi-responsive biomimetic nano-complex platform for enhanced gene delivery. Journal of Materials Chemistry B, 2018, 6, 5910-5921.	2.9	11
131	The complex hydrogel based on diatom biosilica and hydroxybutyl chitosan for wound healing. Colloids and Surfaces B: Biointerfaces, 2022, 216, 112523.	2.5	10
132	Synthesis and characterization of chitosan-based biomaterials modified with different active groups and their relationship with cytotoxicity. Journal Wuhan University of Technology, Materials Science Edition, 2007, 22, 695-700.	0.4	8
133	Characteristics and degradation of chitosan/cellulose acetate microspheres with different model drugs. Frontiers of Materials Science in China, 2008, 2, 417-425.	0.5	8
134	Chitosan and β-cyclodextrin microspheres as pulmonary sustained delivery systems. Journal Wuhan University of Technology, Materials Science Edition, 2008, 23, 541-546.	0.4	7
135	Bridging micro/nano-platform and airway allergy intervention. Journal of Controlled Release, 2022, 341, 364-382.	4.8	7
136	<i>In vitro</i> heterogeneous degradation of alginate and its validation of different molecular weight on blood bio-compatibility. Journal of Biomaterials Science, Polymer Edition, 2017, 28, 380-393.	1.9	6
137	Copper deposited diatom-biosilica with enhanced photothermal and photodynamic performance for infected wound therapy. New Journal of Chemistry, 2022, 46, 2140-2154.	1.4	6
138	Effect of UV-B radiation on ingesting and nutritional selecting behavior of rotifer Brachionus urceus. Wuhan University Journal of Natural Sciences, 2007, 12, 361-366.	0.2	5
139	Influence of Lactobacillus E1 on the storage stability in emulsion immobilization. Journal Wuhan University of Technology, Materials Science Edition, 2009, 24, 75-80.	0.4	5
140	Sodium carboxymethylation-functionalized chitosan fibers for cutaneous wound healing application. Frontiers of Materials Science, 2016, 10, 358-366.	1.1	5
141	Precise quantification of the antibacterial activity of chitosan by NB medium neutralizer. Journal of Materials Science and Technology, 2021, 70, 224-232.	5.6	5
142	Nanosystems as curative platforms for allergic disorder management. Journal of Materials Chemistry B, 2021, 9, 1729-1744.	2.9	5
143	Preparation of alginate-gelatin capsules and its properties. Frontiers of Materials Science in China, 2008, 2, 253-260.	0.5	4
144	Preparation and characteristic of lactoseâ€oleoylchitosan and the application of its selfâ€aggregates as drug delivery system. Journal of Applied Polymer Science, 2011, 121, 3359-3367.	1.3	3

#	Article	IF	CITATIONS
145	The aggregation behavior and formation of nanoparticles of oleoylchitosan in dilute aqueous solution. Journal of Ocean University of China, 2008, 7, 199-204.	0.6	2
146	Biogenic nanoparticles and mineral composition in the radula of chiton Acanthochiton rubrolineatus. Frontiers of Materials Science in China, 2009, 3, 248-254.	0.5	2
147	Peptide-based assemblies as immune checkpoint inhibitor delivery systems for enhanced immunotherapy. Applied Materials Today, 2021, 23, 101063.	2.3	2
148	Properties of biogenic magnetite nanoparticles in the radula of chiton Acanthochiton rubrolineatus lischke. Journal Wuhan University of Technology, Materials Science Edition, 2011, 26, 478-482.	0.4	1
149	Dielectric Analysis of Microcapsule-Immobilized Composite Capsules Suspension: Substances Release. Langmuir, 2020, 36, 966-971.	1.6	1
150	Researches on the Internal Molecular Weight Uniformity of Chitosan Biomaterials. Journal of Ocean University of China, 2020, 19, 459-465.	0.6	0