Rita Azevedo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3839850/publications.pdf Version: 2024-02-01

RITA AZEVEDO

#	Article	lF	CITATIONS
1	Glycoproteogenomics characterizes the CD44 splicing code associated with bladder cancer invasion. Theranostics, 2022, 12, 3150-3177.	10.0	14
2	Mass Spectrometry for Neurobiomarker Discovery: The Relevance of Post-Translational Modifications. Cells, 2022, 11, 1279.	4.1	11
3	Single-pot enzymatic synthesis of cancer-associated MUC16 <i>O</i> -glycopeptide libraries and multivalent protein glycoconjugates: a step towards cancer glycovaccines. New Journal of Chemistry, 2021, 45, 9197-9211.	2.8	6
4	Target Score—A Proteomics Data Selection Tool Applied to Esophageal Cancer Identifies GLUT1-Sialyl Tn Glycoforms as Biomarkers of Cancer Aggressiveness. International Journal of Molecular Sciences, 2021, 22, 1664.	4.1	14
5	Glycoproteomics identifies HOMER3 as a potentially targetable biomarker triggered by hypoxia and glucose deprivation in bladder cancer. Journal of Experimental and Clinical Cancer Research, 2021, 40, 191.	8.6	17
6	Nucleolin-Sle A Glycoforms as E-Selectin Ligands and Potentially Targetable Biomarkers at the Cell Surface of Gastric Cancer Cells. Cancers, 2020, 12, 861.	3.7	20
7	Protein Glycosylation and Tumor Microenvironment Alterations Driving Cancer Hallmarks. Frontiers in Oncology, 2019, 9, 380.	2.8	201
8	Exploring sialyl-Tn expression in microfluidic-isolated circulating tumour cells: A novel biomarker and an analytical tool for precision oncology applications. New Biotechnology, 2019, 49, 77-87.	4.4	31
9	Glycan affinity magnetic nanoplatforms for urinary glycobiomarkers discovery in bladder cancer. Talanta, 2018, 184, 347-355.	5.5	29
10	Circulating tumor cells in bladder cancer: Emerging technologies and clinical implications foreseeing precision oncology. Urologic Oncology: Seminars and Original Investigations, 2018, 36, 221-236.	1.6	17
11	In silico approaches for unveiling novel glycobiomarkers in cancer. Journal of Proteomics, 2018, 171, 95-106.	2.4	14
12	A functional glycoproteomics approach identifies CD13 as a novel E-selectin ligand in breast cancer. Biochimica Et Biophysica Acta - General Subjects, 2018, 1862, 2069-2080.	2.4	23
13	CD44 glycoprotein in cancer: a molecular conundrum hampering clinical applications. Clinical Proteomics, 2018, 15, 22.	2.1	42
14	Targeted <i>O</i> â€glycoproteomics explored increased sialylation and identified MUC16 as a poor prognosis biomarker in advancedâ€stage bladder tumours. Molecular Oncology, 2017, 11, 895-912.	4.6	50
15	Sialyl-Tn identifies muscle-invasive bladder cancer basal and luminal subtypes facing decreased survival, being expressed by circulating tumor cells and metastases. Urologic Oncology: Seminars and Original Investigations, 2017, 35, 675.e1-675.e8.	1.6	39
16	Over forty years of bladder cancer glycobiology: Where do glycans stand facing precision oncology?. Oncotarget, 2017, 8, 91734-91764.	1.8	37
17	Hypoxia enhances the malignant nature of bladder cancer cells and concomitantly antagonizes protein <i>O</i> -glycosylation extension. Oncotarget, 2016, 7, 63138-63157.	1.8	58
18	Moving toward personalized medicine in rheumatoid arthritis: SNPs in methotrexate intracellular pathways are associated with methotrexate therapeutic outcome. Pharmacogenomics, 2016, 17, 1649-1674.	1.3	31

Rita Azevedo

#	Article	IF	CITATIONS
19	SAT0064â€Moving Towards Personalized Medicine in Rheumatoid Arthritis: Atic Polymorphisms as Pharmacogenetic Predictors of Methotrexate Therapeutic Outcome. Annals of the Rheumatic Diseases, 2015, 74, 671.2-671.	0.9	0
20	Pharmacogenomics of Methotrexate Membrane Transport Pathway: Can Clinical Response to Methotrexate in Rheumatoid Arthritis Be Predicted?. International Journal of Molecular Sciences, 2015, 16, 13760-13780.	4.1	36
21	Emerging antibody-based therapeutic strategies for bladder cancer: A systematic review. Journal of Controlled Release, 2015, 214, 40-61.	9.9	28
22	Smartphone application for rheumatoid arthritis self-management: cross-sectional study revealed the usefulness, willingness to use and patients' needs. Rheumatology International, 2015, 35, 1675-1685.	3.0	35
23	Future perspectives of Smartphone applications for rheumatic diseases self-management. Rheumatology International, 2015, 35, 419-431.	3.0	45
24	Prediction of Methotrexate Clinical Response in Portuguese Rheumatoid Arthritis Patients: Implication of <i>MTHFR</i> rs1801133 and <i>ATIC</i> rs4673993 Polymorphisms. BioMed Research International, 2014, 2014, 1-11.	1.9	32
25	Genetic polymorphisms in low-dose methotrexate transporters: current relevance as methotrexate therapeutic outcome biomarkers. Pharmacogenomics, 2014, 15, 1611-1635.	1.3	19
26	SLC19A1, SLC46A1 and SLCO1B1 Polymorphisms as Predictors of Methotrexate-Related Toxicity in Portuguese Rheumatoid Arthritis Patients. Toxicological Sciences, 2014, 142, 196-209.	3.1	52
27	<i>SLC19A1</i> 80G allele as a biomarker of methotrexate-related gastrointestinal toxicity in Portuguese rheumatoid arthritis patients. Pharmacogenomics, 2014, 15, 807-820.	1.3	31
28	Role of Key TYMS Polymorphisms on Methotrexate Therapeutic Outcome in Portuguese Rheumatoid Arthritis Patients. PLoS ONE, 2014, 9, e108165.	2.5	39
29	Current approaches for <i>TYMS</i> polymorphisms and their importance in molecular epidemiology and pharmacogenetics. Pharmacogenomics, 2013, 14, 1337-1351.	1.3	36
30	Nucleolin-SLe ^A Glycoforms as E-Selectin Ligands and Potentially Targetable Biomarkers at the Cell Surface of Gastric Cancer Cells. SSRN Electronic Journal, 0, , .	0.4	0