
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3839791/publications.pdf Version: 2024-02-01

XINCUIN LUI

#	Article	IF	CITATIONS
1	Review on Polymer-Based Composite Electrolytes for Lithium Batteries. Frontiers in Chemistry, 2019, 7, 522.	1.8	302
2	Nanoporous Alâ€Niâ€Coâ€Irâ€Mo Highâ€Entropy Alloy for Recordâ€High Water Splitting Activity in Acidic Environments. Small, 2019, 15, e1904180.	5.2	230
3	Noble Metal-Free Nanoporous High-Entropy Alloys as Highly Efficient Electrocatalysts for Oxygen Evolution Reaction. , 2019, 1, 526-533.		229
4	Nanoporous high-entropy alloys for highly stable and efficient catalysts. Journal of Materials Chemistry A, 2019, 7, 6499-6506.	5.2	215
5	Phase equilibria and the related properties of Sn-Ag-Cu based Pb-free solder alloys. Journal of Electronic Materials, 2000, 29, 1137-1144.	1.0	130
6	Nanoporous high-entropy alloys with low Pt loadings for high-performance electrochemical oxygen reduction. Journal of Catalysis, 2020, 383, 164-171.	3.1	125
7	Rugged High-Entropy Alloy Nanowires with in Situ Formed Surface Spinel Oxide As Highly Stable Electrocatalyst in Zn–Air Batteries. , 2020, 2, 1698-1706.		114
8	Zintl-phase Eu ₂ ZnSb ₂ : A promising thermoelectric material with ultralow thermal conductivity. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 2831-2836.	3.3	103
9	Thermodynamic database for phase diagrams in micro-soldering alloys. Journal of Electronic Materials, 1999, 28, 1164-1171.	1.0	96
10	Multi-component nanoporous alloy/(oxy)hydroxide for bifunctional oxygen electrocatalysis and rechargeable Zn-air batteries. Applied Catalysis B: Environmental, 2020, 268, 118431.	10.8	96
11	Formation of core-type macroscopic morphologies in Cu-Fe base alloys with liquid miscibility gap. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2004, 35, 1243-1253.	1.1	95
12	MOF Structure Engineering to Synthesize Coï£įNï£įC Catalyst with Richer Accessible Active Sites for Enhanced Oxygen Reduction. Small, 2021, 17, e2104684.	5.2	94
13	Top–Down Synthesis of Noble Metal Particles on High-Entropy Oxide Supports for Electrocatalysis. Chemistry of Materials, 2021, 33, 1771-1780.	3.2	92
14	Studies of the Ag-In phase diagram and surface tension measurements. Journal of Electronic Materials, 2001, 30, 1120-1128.	1.0	88
15	Thermodynamic assessment of the Aluminum-Manganese (Al-Mn) binary phase diagram. Journal of Phase Equilibria and Diffusion, 1999, 20, 45-56.	0.3	87
16	Thermodynamic assessment of the phase diagrams of the Cu-Sb and Sb-Zn systems. Journal of Phase Equilibria and Diffusion, 2000, 21, 432-442.	0.3	85
17	Recent Progress on Topological Structures in Ferroic Thin Films and Heterostructures. Advanced Materials, 2021, 33, e2000857.	11.1	84
18	High-strength Co–Al–V-base superalloys strengthened by γ′-Co3(Al,V) with high solvus temperature. Acta Materialia, 2019, 170, 62-74.	3.8	83

#	Article	IF	CITATIONS
19	Experimental determination and thermodynamic calculation of the phase equilibria in the Cu-In-Sn system. Journal of Electronic Materials, 2001, 30, 1093-1103.	1.0	81
20	Highâ€Performance Nâ€ŧype Mg ₃ Sb ₂ towards Thermoelectric Application near Room Temperature. Advanced Functional Materials, 2020, 30, 1906143.	7.8	78
21	Experimental determination and thermodynamic calculation of the phase equilibria and surface tension in the Sn-Ag-In system. Journal of Electronic Materials, 2002, 31, 1139-1151.	1.0	75
22	Experimental investigation and thermodynamic calculation of the phase equilibria in the Cu-Sn and Cu-Sn-Mn systems. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2004, 35, 1641-1654.	1.1	68
23	Reliable N-type Mg3.2Sb1.5Bi0.49Te0.01/304 stainless steel junction for thermoelectric applications. Acta Materialia, 2020, 198, 25-34.	3.8	62
24	Ultrathin carbon nanosheets for highly efficient capacitive K-ion and Zn-ion storage. Journal of Materials Chemistry A, 2020, 8, 22874-22885.	5.2	58
25	Heavy Doping by Bromine to Improve the Thermoelectric Properties of nâ€ŧype Polycrystalline SnSe. Advanced Science, 2018, 5, 1800598.	5.6	57
26	Twelve-Component Free-Standing Nanoporous High-Entropy Alloys for Multifunctional Electrocatalysis. , 2022, 4, 181-189.		50
27	Thermodynamic assessment of the Cu-In binary system. Journal of Phase Equilibria and Diffusion, 2002, 23, 409-415.	0.3	47
28	Flexible Solidâ€State Direct Ethanol Fuel Cell Catalyzed by Nanoporous Highâ€Entropy Alâ€Pdâ€Niâ€Cuâ€Mo An and Spinel (AlMnCo) ₃ O ₄ Cathode. Advanced Functional Materials, 2021, 31, 2007129.	10de 7.8	47
29	Microsphere Pattern Prepared by a "Reverse―Breath Figure Method. Macromolecules, 2009, 42, 9351-9356.	2.2	46
30	Modulating the Surface Ligand Orientation for Stabilized Anionic Redox in Liâ€Rich Oxide Cathodes. Advanced Energy Materials, 2021, 11, 2003479.	10.2	45
31	n-Type TaCoSn-Based Half-Heuslers as Promising Thermoelectric Materials. ACS Applied Materials & Interfaces, 2019, 11, 41321-41329.	4.0	44
32	A Dual Role by Incorporation of Magnesium in YbZn ₂ Sb ₂ Zintl Phase for Enhanced Thermoelectric Performance. Advanced Energy Materials, 2020, 10, 2001229.	10.2	44
33	Mechanical-force-induced non-local collective ferroelastic switching in epitaxial lead-titanate thin films. Nature Communications, 2019, 10, 3951.	5.8	43
34	Enhanced thermoelectric performance of n-type TiCoSb half-Heusler by Ta doping and Hf alloying. Rare Metals, 2021, 40, 40-47.	3.6	43
35	Enhanced Thermoelectric Performance in High Entropy Alloys Sn _{0.25} Pb _{0.25} Mn _{0.25} Ge _{0.25} Te. ACS Applied Materials & Interfaces, 2021, 13, 18638-18647.	4.0	43
36	Phase equilibria of Sn-In based micro-soldering alloys. Journal of Electronic Materials, 2000, 29, 1113-1121.	1.0	41

#	Article	IF	CITATIONS
37	Thermodynamic database on microsolders and copper-based alloy systems. Journal of Electronic Materials, 2003, 32, 1265-1272.	1.0	40
38	Experimental studies and thermodynamic optimization of the Ni-Bi system. Journal of Phase Equilibria and Diffusion, 2005, 26, 161-168.	0.5	40
39	Eightâ€Component Nanoporous Highâ€Entropy Oxides with Low Ru Contents as Highâ€Performance Bifunctional Catalysts in Znâ€Air Batteries. Small, 2022, 18, e2107207.	5.2	40
40	Enhanced thermoelectric performance of p-type Mg3Sb2 by lithium doping and its tunability in an anionic framework. Journal of Materials Science, 2018, 53, 16001-16009.	1.7	37
41	Oriented Formation of a Prussian Blue Nanoflower as a High Performance Cathode for Sodium Ion Batteries. ACS Sustainable Chemistry and Engineering, 2020, 8, 16229-16240.	3.2	37
42	Thermodynamic database of the phase diagrams in Cu-Fe base ternary systems. Journal of Phase Equilibria and Diffusion, 2004, 25, 320-328.	0.5	36
43	Promising Zintl-Phase Thermoelectric Compound SrAgSb. Chemistry of Materials, 2020, 32, 6983-6989.	3.2	36
44	Fast and stable K-ion storage enabled by synergistic interlayer and pore-structure engineering. Nano Research, 2021, 14, 4502-4511.	5.8	36
45	A four-state memory cell based on magnetoelectric composite. Science Bulletin, 2008, 53, 2135-2138.	4.3	33
46	Passive Radiative Cooling Enables Improved Performance in Wearable Thermoelectric Generators. Small, 2022, 18, e2106875.	5.2	33
47	A Novel Self-Assembling Al-based Composite Powder with High Hydrogen Generation Efficiency. Scientific Reports, 2015, 5, 17428.	1.6	30
48	Experimental investigation and thermodynamic calculation of phase equilibria in the Sn-Au-Ni system. Journal of Electronic Materials, 2005, 34, 670-679.	1.0	28
49	N-type Bi-doped SnSe Thermoelectric Nanomaterials Synthesized by a Facile Solution Method. Inorganic Chemistry, 2018, 57, 13800-13808.	1.9	28
50	Manipulating the intrinsic vacancies for enhanced thermoelectric performance in Eu2ZnSb2 Zintl phase. Nano Energy, 2020, 73, 104771.	8.2	28
51	Accelerated discovery of high-performance Cu-Ni-Co-Si alloys through machine learning. Materials and Design, 2021, 209, 109929.	3.3	25
52	The use of phase diagrams and thermodynamic databases for electronic materials. Jom, 2003, 55, 53-59.	0.9	24
53	Unsupervised machine learning for discovery of promising half-Heusler thermoelectric materials. Npj Computational Materials, 2022, 8, .	3.5	24
54	A jumping shape memory alloy under heat. Scientific Reports, 2016, 6, 21754.	1.6	23

#	Article	IF	CITATIONS
55	A general and scalable approach to produce nanoporous alloy nanowires with rugged ligaments for enhanced electrocatalysis. Journal of Materials Chemistry A, 2018, 6, 12541-12550.	5.2	23
56	Precipitation behavior in G-phase strengthened ferritic stainless steels. Acta Materialia, 2021, 205, 116542.	3.8	23
57	High-Performance Spectrally Selective Absorber Using the ZrB ₂ -Based All-Ceramic Coatings. ACS Applied Materials & Interfaces, 2021, 13, 40522-40530.	4.0	23
58	Multicomponent Spinel Metal Oxide Nanocomposites as High-Performance Bifunctional Catalysts in Zn–Air Batteries. ACS Applied Energy Materials, 2020, 3, 7710-7718.	2.5	22
59	Enhanced Thermoelectric Properties in pâ€Type Double Halfâ€Heusler Ti _{2â^'<i>y</i>} Hf _{<i>y</i>} FeNiSb _{2â^'<i>x</i>} Sn _{<i>x</i>} Compounds. Physica Status Solidi (A) Applications and Materials Science, 2020, 217, 2000096.	0.8	22
60	Phase Boundary Mapping in ZrNiSn Half-Heusler for Enhanced Thermoelectric Performance. Research, 2020, 2020, 4630948.	2.8	22
61	Vacancy ordering induced topological electronic transition in bulk Eu ₂ ZnSb ₂ . Science Advances, 2021, 7, .	4.7	21
62	Point defect approach to enhance the thermoelectric performance of Zintl-phase BaAgSb. Science China Materials, 2021, 64, 2541-2550.	3.5	19
63	Inhibiting Surface Diffusion to Synthesize 3D Bicontinuous Nanoporous Nâ€Doped Carbon for Boosting Oxygen Reduction Reaction in Flexible Allâ€Solidâ€State Alâ€Air Batteries. Advanced Functional Materials, 2021, 31, 2103632.	7.8	19
64	Phase stability among the α(A1), β(A2), and γ(D83) phases in the Cu-Al-X system. Journal of Phase Equilibria and Diffusion, 2001, 22, 431-438.	0.3	18
65	Influence of microstructural features on thermal expansion coefficient in graphene/epoxy composites. Heliyon, 2016, 2, e00094.	1.4	18
66	<i>In situ</i> coupling of Ag nanoparticles with high-entropy oxides as highly stable bifunctional catalysts for wearable Zn–Ag/Zn–air hybrid batteries. Nanoscale, 2021, 13, 16164-16171.	2.8	18
67	Enhanced Thermoelectric Performance of Zintl Phase Ca ₉ Zn _{4+<i>x</i>} Sb ₉ by Beneficial Disorder on the Selective Cationic Site. ACS Applied Materials & Interfaces, 2019, 11, 37741-37747.	4.0	17
68	Novel core/void/shell composite phase change materials for high temperature thermal energy storage. Chemical Engineering Journal, 2020, 391, 123539.	6.6	17
69	Defect Engineering for Realizing p-Type AgBiSe ₂ with a Promising Thermoelectric Performance. Chemistry of Materials, 2020, 32, 3528-3536.	3.2	17
70	CALPHAD as a powerful technique for design and fabrication of thermoelectric materials. Journal of Materials Chemistry A, 2021, 9, 6634-6649.	5.2	16
71	Stabilizing the Optimal Carrier Concentration in Al/Sb-Codoped GeTe for High Thermoelectric Performance. ACS Applied Materials & Interfaces, 2021, 13, 45717-45725.	4.0	16
72	Novel and durable composite phase change thermal energy storage materials with controllable melting temperature. Journal of Materials Science and Technology, 2021, 86, 11-19.	5.6	16

#	Article	IF	CITATIONS
73	Tuning the Carrier Scattering Mechanism by Rare-Earth Element Doping for High Average <i>zT</i> in Mg ₃ Sb ₂ -Based Compounds. ACS Applied Materials & Interfaces, 2022, 14, 7022-7029.	4.0	16
74	Highly Strengthened and Toughened Zn–Li–Mn Alloys as Longâ€Cycling Life and Dendriteâ€Free Zn Anode for Aqueous Zincâ€Ion Batteries. Small, 2022, 18, e2200787.	5.2	16
75	Effects of Nb and W Additions on the Microstructures and Mechanical Properties of Novel γ/γ' Co-V-Ti-Based Superalloys. Metals, 2018, 8, 563.	1.0	15
76	Titanium Doping to Enhance Thermoelectric Performance of 19â€Electron VCoSb Halfâ€Heusler Compounds with Vanadium Vacancies. Annalen Der Physik, 2020, 532, 1900440.	0.9	15
77	Enhanced Thermoelectric Performance in Nâ€Type Mg _{3.2} Sb _{1.5} Bi _{0.5} by La or Ce Doping into Mg. Advanced Electronic Materials, 2020, 6, 1901391.	2.6	15
78	Experimental Investigation of Phase Equilibria in the Ni-Cr-Si Ternary System. Journal of Phase Equilibria and Diffusion, 2014, 35, 334-342.	0.5	14
79	A comprehensive study of the high-pressure–temperature phase diagram of silicon. Journal of Materials Science, 2018, 53, 7475-7485.	1.7	14
80	Inhibited Surface Diffusion of High-Entropy Nano-Alloys for the Preparation of 3D Nanoporous Graphene with High Amounts of Single Atom Dopants. , 2022, 4, 978-986.		14
81	Thermodynamic Description of the Cu-Ni-Si System. Journal of Phase Equilibria and Diffusion, 2014, 35, 93-104.	0.5	13
82	Corrosion Engineering To Synthesize Ultrasmall and Monodisperse Alloy Nanoparticles Stabilized in Ultrathin Cobalt (Oxy)hydroxide for Enhanced Electrocatalysis. ACS Applied Materials & Interfaces, 2019, 11, 14745-14752.	4.0	13
83	Organic/Inorganic Hybrid Design as a Route for Promoting the Bi _{0.5} Sb _{1.5} Te ₃ for Highâ€Performance Thermoelectric Power Generation. Advanced Functional Materials, 2022, 32, .	7.8	13
84	Band Modulation and Strain Fluctuation for Realizing High Average <i>zT</i> in GeTe. Advanced Energy Materials, 2022, 12, .	10.2	13
85	Thermodynamics and liquid phase separation in the Cu–Co–Nb ternary alloys. Journal of Materials Research, 2010, 25, 1706-1717.	1.2	12
86	Atomicâ€Level Mechanisms of Nucleation of Pure Liquid Metals during Rapid Cooling. ChemPhysChem, 2015, 16, 3916-3927.	1.0	12
87	Portable water-using H ₂ production materials converted from waste aluminum. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2018, 40, 1991-1997.	1.2	12
88	Dominant role of M element on the stability and properties of Prussian blue analogues NaxMFe(CN)6 (MÂ=Â3d transition metal) as cathode material for the sodium-ion batteries. Journal of Alloys and Compounds, 2021, 870, 159533.	2.8	12
89	Effects of jet milling on W–10 wt.%Cu composite powder for injection molding. Journal of Materials Research and Technology, 2020, 9, 8535-8543.	2.6	11
90	Integrate multifunctional ionic sieve lithiated X zeolite-ionic liquid electrolyte for solid-state lithium metal batteries with ultralong lifespan. Chemical Engineering Journal, 2022, 433, 133522.	6.6	11

#	Article	IF	CITATIONS
91	Development of phase change materials using hydrolyzed Al-Bi composite powder for solar energy storage. Chemical Engineering Journal, 2021, 421, 127836.	6.6	10
92	Experimental Investigation of Phase Equilibria in the Co-Cr-Nb System at 1000, 1100, and 1200°C. Journal of Phase Equilibria and Diffusion, 2013, 34, 313-321.	0.5	9
93	The Influence of Flexural Deformation on the Static Magnetoelectric Coefficient of a Bilayered Magnetoelectric Composite. Materials Research Letters, 2013, 1, 45-50.	4.1	9
94	Experimental investigation of phase equilibria in the Co–Cr–W ternary system. International Journal of Materials Research, 2013, 104, 836-842.	0.1	8
95	Microstructure, martensitic transformation and shape memory effect of polycrystalline Cu-Al-Mn-Fe alloys. Science China Technological Sciences, 2021, 64, 400-406.	2.0	8
96	Experimental Investigation of Phase Equilibria in the Fe-Si-Ti Ternary System. Journal of Phase Equilibria and Diffusion, 2017, 38, 865-873.	0.5	7
97	Experimental Investigation and Thermodynamic Calculation of the Phase Equilibria in the Cu-Fe-Ta System. Journal of Phase Equilibria and Diffusion, 2015, 36, 28-38.	0.5	6
98	Experimental Determination of Phase Equilibria in the Sn-Zn-Sb System. Journal of Phase Equilibria and Diffusion, 2015, 36, 350-356.	0.5	6
99	Development of Cu-Mn-Ga-based ferromagnetic shape memory single crystals. Materialia, 2020, 12, 100789.	1.3	6
100	Multicomponent Co-Ti-based superalloy with high solvus temperature and low lattice misfit. Materials Letters, 2021, 284, 128910.	1.3	6
101	Enhanced Piezoelectricity and Excellent Thermal Stability in Sm ³⁺ -Doped BiFeO ₃ -PbTiO ₃ Ceramics. ACS Applied Electronic Materials, 2022, 4, 807-813.	2.0	6
102	Thermodynamic assessment of phase equilibria in the Sn-Au-Bi system with key experimental verification. Journal of Materials Research, 2010, 25, 576-586.	1.2	5
103	Experimental investigation of phase equilibria in the Ni–Fe–Zr ternary system. Journal of Materials Research, 2016, 31, 2407-2414.	1.2	5
104	Effects of Bonding Treatment and Ball Milling on W-20 wt.% Cu Composite Powder for Injection Molding. Materials, 2021, 14, 1897.	1.3	5
105	Experimental determination and thermodynamic calculation of the phase equilibria in the Co–Mn–Ta system. International Journal of Materials Research, 2014, 105, 1179-1190.	0.1	4
106	Experimental Investigation and Thermodynamic Calculation of the Phase Equilibria in the Bi-Cu-Zn Ternary System. Journal of Phase Equilibria and Diffusion, 2014, 35, 530-543.	0.5	3
107	Experimental investigation of phase equilibria in the Nb–Si–Ta ternary system. International Journal of Materials Research, 2016, 107, 1112-1120.	0.1	3
108	Experimental investigation of phase equilibria in the Ni–Nb–V ternary system. International Journal of Materials Research, 2017, 108, 767-775.	0.1	3

#	Article	IF	CITATIONS
109	Boosting Total Conversion Efficiency of Hybrid PVT <i>via</i> a Spectral Splitter/Absorber Based on Lossy Periodic Structured Media. Solar Rrl, 0, , .	3.1	3
110	Thermodynamic Assessment of the Ti-Ir System. Journal of Phase Equilibria and Diffusion, 2014, 35, 269-275.	0.5	2
111	The pressure–temperature phase diagram of pure Co based on first-principles calculations. Physical Chemistry Chemical Physics, 2017, 19, 22061-22068.	1.3	2
112	Development of materials design tool and its application in Pb-free micro-solders in electronic package. Science China Technological Sciences, 2010, 53, 1495-1500.	2.0	1
113	The Effect of Temperature and Misfit on γ′ Precipitation in Co-Ti Alloys: Phase-Field Modeling and Experiments. Journal of Phase Equilibria and Diffusion, 2020, 41, 15-26.	0.5	1
114	Inhibiting Surface Diffusion to Synthesize 3D Bicontinuous Nanoporous Nâ€Doped Carbon for Boosting Oxygen Reduction Reaction in Flexible Allâ€Solidâ€State Alâ€Air Batteries (Adv. Funct. Mater. 38/2021). Advanced Functional Materials, 2021, 31, 2170284.	7.8	1
115	Experimental Investigation and Thermodynamic Calculation of Phase Equilibria in the Mg-Pb-Sn Ternary System. Journal of Phase Equilibria and Diffusion, 2018, 39, 324-343.	0.5	0
116	Abnormal orderly transformation in supercooled state of an Al-based alloy. Physical Review Materials, 2020, 4, .	0.9	0