Zongxian Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3839560/publications.pdf

Version: 2024-02-01

ΖΟΝΟΧΙΑΝ ΥΛΝΟ

#	Article	IF	CITATIONS
1	Atomic and electronic structure of unreduced and reduced CeO2 surfaces: A first-principles study. Journal of Chemical Physics, 2004, 120, 7741-7749.	1.2	338
2	The adsorption of CO and NO on the MoS2 monolayer doped with Au, Pt, Pd, or Ni: A first-principles study. Applied Surface Science, 2016, 383, 98-105.	3.1	321
3	A theoretical simulation on the catalytic oxidation of CO on Pt/graphene. Physical Chemistry Chemical Physics, 2012, 14, 16566.	1.3	297
4	Bifunctional CoNx embedded graphene electrocatalysts for OER and ORR: A theoretical evaluation. Carbon, 2018, 130, 112-119.	5.4	209
5	C3N monolayers as promising candidates for NO2 sensors. Sensors and Actuators B: Chemical, 2018, 266, 664-673.	4.0	172
6	3d transition metal embedded C2N monolayers as promising single-atom catalysts: A first-principles study. Carbon, 2016, 105, 463-473.	5.4	167
7	Novel catalytic activity for oxygen reduction reaction on MnN4 embedded graphene: A dispersion-corrected density functional theory study. Carbon, 2015, 84, 500-508.	5.4	166
8	The mechanisms of oxygen reduction reaction on phosphorus doped graphene: A first-principles study. Journal of Power Sources, 2015, 276, 222-229.	4.0	165
9	CO oxidation on single Pd atom embedded defect-graphene via a new termolecular Eley-Rideal mechanism. Carbon, 2017, 118, 35-42.	5.4	164
10	Modulating electronic, magnetic and chemical properties of MoS2 monolayer sheets by substitutional doping with transition metals. Applied Surface Science, 2016, 364, 181-189.	3.1	161
11	Effects of Zr doping on stoichiometric and reduced ceria: A first-principles study. Journal of Chemical Physics, 2006, 124, 224704.	1.2	131
12	Formaldehyde molecule adsorption on the doped monolayer MoS2: A first-principles study. Applied Surface Science, 2016, 371, 180-188.	3.1	129
13	Theoretical Inspection of M ₁ /PMA Single-Atom Electrocatalyst: Ultra-High Performance for Water Splitting (HER/OER) and Oxygen Reduction Reactions (OER). ACS Catalysis, 2021, 11, 8929-8941.	5.5	121
14	Trapping of metal atoms in the defects on graphene. Journal of Chemical Physics, 2011, 135, 224704.	1.2	116
15	Theoretical study on the Si-doped graphene as an efficient metal-free catalyst for CO oxidation. Applied Surface Science, 2014, 308, 402-407.	3.1	115
16	Repairing sulfur vacancies in the MoS ₂ monolayer by using CO, NO and NO ₂ molecules. Journal of Materials Chemistry C, 2016, 4, 7093-7101.	2.7	111
17	Physisorbed, Chemisorbed, and Oxidized CO on Highly Active Cuâ^'CeO ₂ (111). Journal of Physical Chemistry C, 2010, 114, 4486-4494.	1.5	110
18	Strong and weak adsorption of CO on CeO2 surfaces from first principles calculations. Chemical Physics Letters, 2004, 396, 384-392.	1.2	108

#	Article	IF	CITATIONS
19	Oxygen vacancy formation energy in Pd-doped ceria: A DFT+U study. Journal of Chemical Physics, 2007, 127, 074704.	1.2	105
20	The Effect of Environment on the Reaction of Water on the Ceria(111) Surface: A DFT+U Study. Journal of Physical Chemistry C, 2010, 114, 14891-14899.	1.5	105
21	A promising single atom catalyst for CO oxidation: Ag on boron vacancies of h-BN sheets. Physical Chemistry Chemical Physics, 2017, 19, 16795-16805.	1.3	102
22	CO oxidation on Mn-N4 porphyrin-like carbon nanotube: A DFT-D study. Applied Surface Science, 2017, 426, 1232-1240.	3.1	99
23	CO oxidation catalyzed by the single Co atom embedded hexagonal boron nitride nanosheet: a DFT-D study. Physical Chemistry Chemical Physics, 2016, 18, 21865-21870.	1.3	96
24	Single Pt atom stabilized on nitrogen doped graphene: CO oxidation readily occurs via the tri-molecular Eley–Rideal mechanism. Physical Chemistry Chemical Physics, 2015, 17, 20006-20013.	1.3	91
25	First principles study on the interfacial properties of NM/graphdiyne (NM = Pd, Pt, Rh and Ir): The implications for NM growing. Applied Surface Science, 2016, 360, 1-7.	3.1	90
26	First-Principles Study on the Single Ir Atom Embedded Graphdiyne: An Efficient Catalyst for CO Oxidation. Journal of Physical Chemistry C, 2018, 122, 23481-23492.	1.5	87
27	Tuning the catalytic property of non-noble metallic impurities in graphene. Carbon, 2014, 71, 139-149.	5.4	85
28	First-principles study of thePtâ^•CeO2(111)interface. Physical Review B, 2007, 76, .	1.1	82
29	Single Pd atomic catalyst on Mo ₂ CO ₂ monolayer (MXene): unusual activity for CO oxidation by trimolecular Eley–Rideal mechanism. Physical Chemistry Chemical Physics, 2018, 20, 3504-3513.	1.3	82
30	Formation, Stabilities, and Electronic and Catalytic Performance of Platinum Catalyst Supported on Non-Metal-Doped Graphene. Journal of Physical Chemistry C, 2013, 117, 5258-5268.	1.5	78
31	Boron-Doped C ₃ N Monolayer as a Promising Metal-Free Oxygen Reduction Reaction Catalyst: A Theoretical Insight. Journal of Physical Chemistry C, 2018, 122, 20312-20322.	1.5	78
32	Formation and catalytic activity of Pt supported on oxidized graphene for the CO oxidation reaction. Physical Chemistry Chemical Physics, 2014, 16, 7887-7895.	1.3	75
33	Oxygen vacancy formation energy at the Pd/CeO2(111) interface. Physics Letters, Section A: General, Atomic and Solid State Physics, 2007, 369, 132-139.	0.9	70
34	Facile synthesis of hollow palladium/copper alloyed nanocubes for formic acid oxidation. Chemical Communications, 2011, 47, 8581.	2.2	70
35	Facilitated vacancy formation at Zr-doped ceria(111) surfaces. Surface Science, 2008, 602, 1199-1206.	0.8	68
36	Pd ₁ /BN as a promising single atom catalyst of CO oxidation: a dispersion-corrected density functional theory study. RSC Advances, 2015, 5, 84381-84388.	1.7	68

#	Article	IF	CITATIONS
37	Single non-noble-metal cobalt atom stabilized by pyridinic vacancy graphene: An efficient catalyst for CO oxidation. Journal of Molecular Catalysis A, 2016, 417, 28-35.	4.8	68
38	3D well-ordered porous phosphorus doped carbon as an anode for sodium storage: structure design, experimental and computational insights. Journal of Materials Chemistry A, 2019, 7, 11400-11407.	5.2	64
39	Interaction between H ₂ 0, N ₂ , CO, NO, NO ₂ and N ₂ O molecules and a defective WSe ₂ monolayer. Physical Chemistry Chemical Physics, 2017, 19, 26022-26033.	1.3	60
40	Detection of gas molecules on single Mn adatom adsorbed graphyne: a DFT-D study. Journal Physics D: Applied Physics, 2018, 51, 065109.	1.3	56
41	The sensing mechanism of Pt-doped SnO2 surface toward CO: A first-principle study. Sensors and Actuators B: Chemical, 2014, 202, 83-92.	4.0	55
42	Cu-doped ceria: Oxygen vacancy formation made easy. Chemical Physics Letters, 2011, 510, 60-66.	1.2	53
43	A density function theory study on the NO reduction on nitrogen doped graphene. Physical Chemistry Chemical Physics, 2014, 16, 20561-20569.	1.3	53
44	Sulfur doped graphene as a promising metal-free electrocatalyst for oxygen reduction reaction: a DFT-D study. RSC Advances, 2017, 7, 20398-20405.	1.7	53
45	Origin of the High Activity of the Ceria-Supported Copper Catalyst for H ₂ O Dissociation. Journal of Physical Chemistry C, 2011, 115, 6730-6740.	1.5	52
46	Direct CO oxidation by lattice oxygen on the SnO ₂ (110) surface: a DFT study. Physical Chemistry Chemical Physics, 2014, 16, 12488-12494.	1.3	51
47	The mechanism of oxygen reduction reaction on CoN4 embedded graphene: A combined kinetic and atomistic thermodynamic study. International Journal of Hydrogen Energy, 2016, 41, 21212-21220.	3.8	51
48	Cu ₃ -Cluster-Doped Monolayer Mo ₂ CO ₂ (MXene) as an Electron Reservoir for Catalyzing a CO Oxidation Reaction. ACS Applied Materials & Interfaces, 2018, 10, 32903-32912.	4.0	51
49	First-principles study of the adsorption of sulfur on Pt(111): S core-level shifts and the nature of the Pt-S bond. Physical Review B, 2002, 65, .	1.1	48
50	CO2 thermoreduction to methanol on the MoS2 supported single Co atom catalyst: A DFT study. Applied Surface Science, 2020, 528, 147047.	3.1	46
51	Oxygen vacancy pairs on CeO2(110): A DFT+U study. Physics Letters, Section A: General, Atomic and Solid State Physics, 2009, 373, 2786-2792.	0.9	44
52	Noble metals induced magnetic properties of graphene. Journal of Magnetism and Magnetic Materials, 2011, 323, 2441-2447.	1.0	44
53	Tunable magnetic and electronic properties of the Cr-based MXene (Cr2C) with functional groups and doping. Journal of Magnetism and Magnetic Materials, 2020, 514, 167141.	1.0	42
54	Repairing single and double atomic vacancies in a C ₃ N monolayer with CO or NO molecules: a first-principles study. Physical Chemistry Chemical Physics, 2018, 20, 13517-13527.	1.3	41

#	Article	IF	CITATIONS
55	Structural and electronic properties of NM-doped ceria (NM = Pt, Rh): a first-principles study. Journal of Physics Condensed Matter, 2008, 20, 035210.	0.7	39
56	Direct CO Oxidation by Lattice Oxygen on Zr-Doped Ceria Surfaces. Catalysis Letters, 2011, 141, 78-82.	1.4	39
57	Tailoring the Electronic Structure of Transition Metals by the V ₂ C MXene Support: Excellent Oxygen Reduction Performance Triggered by Metal–Support Interactions. ACS Applied Materials & Interfaces, 2020, 12, 28206-28216.	4.0	39
58	The adsorption, diffusion and dissociation of O2 on Pt-skin Pt3Ni(111): A density functional theory study. Chemical Physics Letters, 2010, 499, 83-88.	1.2	38
59	Interfacial properties of NM/CeO ₂ (111) (NM = noble metal atoms or clusters of Pd, Pt and) Tj ETQq1	10,7843] 0.7	lårgBT /Ov
60	Preventing the CO poisoning on Pt nanocatalyst using appropriate substrate: a first-principles study. Journal of Nanoparticle Research, 2012, 14, 1.	0.8	34
61	A comparison study of oxygen reduction on the supported Pt, Pd, Au monolayer on WC(0001). Journal of Power Sources, 2016, 321, 163-173.	4.0	34
62	Electronic structure and optical properties for blue phosphorene/graphene-like GaN van der Waals heterostructures. Current Applied Physics, 2017, 17, 1714-1720.	1.1	34
63	SO <i>x</i> on ceria from adsorbed SO2. Journal of Chemical Physics, 2011, 134, 184703.	1.2	32
64	The mechanism of oxygen activation on single Pt-atom doped SnO2(110) surface. Journal of Materials Science, 2016, 51, 10400-10407.	1.7	32
65	Recent progress of MXenes as the support of catalysts for the CO oxidation and oxygen reduction reaction. Chinese Chemical Letters, 2020, 31, 931-936.	4.8	32
66	Cr2NX2 MXene (X = O, F, OH): A 2D ferromagnetic half-metal. Applied Physics Letters, 2021, 119, .	1.5	32
67	Density functional theory studies on the adsorption, diffusion and dissociation of O2 on Pt(111). Physics Letters, Section A: General, Atomic and Solid State Physics, 2010, 374, 4713-4717.	0.9	31
68	The synergistic effects of the Cu–CeO2(111) catalysts on the adsorption and dissociation of water molecules. Physical Chemistry Chemical Physics, 2011, 13, 9363.	1.3	31
69	Additive-Free Fabrication of Spherical Hollow Palladium/Copper Alloyed Nanostructures for Fuel Cell Application. ACS Applied Materials & Interfaces, 2012, 4, 4461-4464.	4.0	31
70	Tuning the ORR activity of Pt-based Ti ₂ CO ₂ MXenes by varying the atomic cluster size and doping with metals. Nanoscale, 2020, 12, 12497-12507.	2.8	31
71	Identification of Efficient Single-Atom Catalysts Based on V ₂ CO ₂ MXene by <i>ab Initio</i> Simulations. Journal of Physical Chemistry C, 2020, 124, 4090-4100.	1.5	31
72	Density Functional Theory Study of Sn Adsorption on the CeO ₂ Surface. Journal of Physical Chemistry C, 2011, 115, 16461-16466.	1.5	30

#	Article	IF	CITATIONS
73	Novel two-dimensional ferroelectric PbTe under tension: A first-principles prediction. Journal of Applied Physics, 2017, 122, .	1.1	30
74	Effects of rare-earth doping on the ionic conduction of CeO2 in solid oxide fuel cells. Ceramics International, 2018, 44, 3707-3711.	2.3	30
75	Engineering the activity of CoNx-graphene for hydrogen evolution. International Journal of Hydrogen Energy, 2018, 43, 20573-20579.	3.8	29
76	Density functional theory study on the interaction of CO with the Fe3O4(001) surface. Applied Surface Science, 2014, 317, 752-759.	3.1	28
77	Effect of Cu doping on the catalytic activity of Fe3O4 in water-gas shift reactions. International Journal of Hydrogen Energy, 2015, 40, 2193-2198.	3.8	28
78	The electronic and reduction properties of Ce0.75Zr0.25O2(110). Chemical Physics Letters, 2008, 450, 286-291.	1.2	27
79	First-Principles Study on the Effects of Zr Dopant on the CO Adsorption on Ceria. Journal of Physical Chemistry C, 2008, 112, 15341-15347.	1.5	27
80	The role of the intrinsic Se and In vacancies in the interaction of O2 and H2O molecules with the InSe monolayer. Applied Surface Science, 2018, 434, 215-227.	3.1	27
81	The mechanism of sulfur poisoning on the nickel/yttrium-stabilized zirconia anode of solid oxide fuel cells: The role of the oxygen vacancy. Journal of Power Sources, 2013, 237, 128-131.	4.0	26
82	Several different charge transfer and Ce ³⁺ localization scenarios for Rh–CeO ₂ (111). Journal of Materials Chemistry A, 2014, 2, 2333-2345.	5.2	26
83	Identification of Highâ€Performance Singleâ€Atom MXenes Catalysts for Lowâ€Temperature CO Oxidation. Advanced Theory and Simulations, 2019, 2, 1900006.	1.3	26
84	Phosphorene: A promising metal free cathode material for proton exchange membrane fuel cell. Applied Surface Science, 2019, 479, 590-594.	3.1	26
85	Cooperative Catalysis toward Oxygen Reduction Reaction under Dual Coordination Environments on Intrinsic AMnO ₃ â€Type Perovskites via Regulating Stacking Configurations of Coordination Units. Advanced Materials, 2020, 32, e2006145.	11.1	26
86	CO ₂ Reduction on Metal- and Nitrogen-Codoped Graphene: Balancing Activity and Selectivity via Coordination Engineering. ACS Sustainable Chemistry and Engineering, 2020, 8, 6134-6141.	3.2	26
87	Palladium nanoparticles with high energy facets as a key factor in dissociating O2 in the solvent-free selective oxidation of alcohols. Chemical Communications, 2013, 49, 6626.	2.2	25
88	Tunable Electric Properties of Bilayer α-GeTe with Different Interlayer Distances and External Electric Fields. Nanoscale Research Letters, 2018, 13, 400.	3.1	25
89	Adsorption and dissociation of ammonia on small iron clusters. International Journal of Hydrogen Energy, 2015, 40, 346-352.	3.8	23
90	Facile synthesis of silver@carbon nanocable-supported platinum nanoparticles as high-performing electrocatalysts for glycerol oxidation in direct glycerol fuel cells. Green Chemistry, 2016, 18, 386-391.	4.6	23

#	Article	IF	CITATIONS
91	Coexistence of Type-I and Type-II Weyl Points in the Weyl-Semimetal OsC ₂ . Journal of Physical Chemistry C, 2018, 122, 3533-3538.	1.5	23
92	Band structure and Fermi surface of <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:mrow><mml:mrow><mml:mo>(</mml:mo><mml:mrow><mml:msub><mml:mrow><mml Physical Review B, 2009, 80, .</mml </mml:mrow></mml:msub></mml:mrow></mml:mrow></mml:mrow></mml:math>	:m tex t>Sr	
93	A theoretical understanding on the CO-tolerance mechanism of the WC(0001) supported Pt monolayer: Some improvement strategies. Applied Surface Science, 2016, 389, 455-461.	3.1	22
94	Dopant segregation and CO adsorption on doped Fe3O4 (1 1 1) surfaces: A first-principle study. Journal of Catalysis, 2018, 364, 291-296.	3.1	22
95	First-principles local density approximation (generalized gradient approximation) +U study of catalytic CenOm clusters: U value differs from bulk. Journal of Chemical Physics, 2008, 128, 164718.	1.2	21
96	Effects of Sm doping content on the ionic conduction of CeO2 in SOFCs from first principles. Applied Physics Letters, 2017, 111, .	1.5	20
97	Strong metal–support interactions impart activity in the oxygen reduction reaction: Au monolayer on Mo ₂ C (MXene). Journal of Physics Condensed Matter, 2018, 30, 475201.	0.7	20
98	WS ₂ /BSe van der Waals type-II heterostructure as a promising water splitting photocatalyst. Materials Research Express, 2019, 6, 035513.	0.8	20
99	Sulfidation of Ceria Surfaces from Sulfur and Sulfur Diffusion. Journal of Physical Chemistry C, 2012, 116, 8417-8425.	1.5	19
100	Theoretical Study of the Catalytic CO Oxidation by Pt Catalyst Supported on Ge-Doped Graphene. Journal of Nanoscience and Nanotechnology, 2014, 14, 7117-7124.	0.9	19
101	Tuning metal cluster catalytic activity with morphology and composition: a DFT study of O ₂ dissociation at the global minimum of Pt _m Pd _n (m + n = 5) clusters. RSC Advances, 2016, 6, 104388-104397.	1.7	19
102	Au ³⁺ Species Boost the Catalytic Performance of Au/ZnO for the Semi-hydrogenation of Acetylene. ACS Applied Materials & amp; Interfaces, 2021, 13, 40429-40440.	4.0	19
103	Oxygen vacancy induced carbon deposition at the triple phase boundary of the nickel/yttrium-stabilized zirconia (YSZ) interface. Journal of Power Sources, 2014, 261, 136-140.	4.0	18
104	Density functional study on the mechanism for the highly active palladium monolayer supported on titanium carbide for the oxygen reduction reaction. Journal of Chemical Physics, 2016, 144, 204703.	1.2	18
105	The stability of TiC surfaces in the environment with various carbon chemical potential and surface defects. Applied Surface Science, 2016, 386, 202-209.	3.1	18
106	Intrinsic defect-mediated magnetism in Fe–N codoped TiO 2. Journal of Alloys and Compounds, 2016, 657, 372-378.	2.8	18
107	Mechanisms of direct hydrogen peroxide synthesis on silicon and phosphorus dual-doped graphene: a DFT-D study. Physical Chemistry Chemical Physics, 2017, 19, 9007-9015.	1.3	18
108	A First-Principles Study of O ₂ Dissociation on Platinum Modified Titanium Carbide: A Possible Efficient Catalyst for the Oxygen Reduction Reaction. Journal of Physical Chemistry C, 2017, 121, 21333-21342.	1.5	18

#	Article	IF	CITATIONS
109	Design of promising single Rh atom catalyst for CO oxidation based on Graphdiyne sheets. Physica E: Low-Dimensional Systems and Nanostructures, 2021, 130, 114676.	1.3	18
110	First-principles study on the Ni@Pt12 lh core–shell nanoparticles: A good catalyst for oxygen reduction reaction. Physics Letters, Section A: General, Atomic and Solid State Physics, 2011, 375, 3142-3148.	0.9	17
111	High Stability and Reactivity of Pt-Based Core–Shell Nanoparticles for Oxygen Reduction Reaction. Journal of Physical Chemistry C, 2012, 116, 13774-13780.	1.5	17
112	The density functional theory studies on the promoting effect of the Cu-modified Fe 3 O 4 catalysts. Physics Letters, Section A: General, Atomic and Solid State Physics, 2015, 379, 607-612.	0.9	17
113	Hollow PdCu nanocubes supported by N-doped graphene: A surface science and electrochemical study. International Journal of Hydrogen Energy, 2015, 40, 14305-14313.	3.8	17
114	Effects of a TiC substrate on the catalytic activity of Pt for NO reduction. Physical Chemistry Chemical Physics, 2016, 18, 13304-13309.	1.3	17
115	Substrate effects on the in-plane ferroelectric polarization of two-dimensional SnTe. Physical Review B, 2019, 99, .	1.1	17
116	The carbon-tolerance mechanism of Ni-based alloy with coinage metals. Physics Letters, Section A: General, Atomic and Solid State Physics, 2013, 377, 2189-2194.	0.9	16
117	Can H2S poison the surface of yttria-stabilized zirconia?. International Journal of Hydrogen Energy, 2013, 38, 8974-8979.	3.8	16
118	Depletion NO x Made Easy by Nitrogen Doped Graphene. Catalysis Letters, 2014, 144, 1016-1022.	1.4	16
119	Importance of oxygen spillover for fuel oxidation on Ni/YSZ anodes in solid oxide fuel cells. Physical Chemistry Chemical Physics, 2014, 16, 8536.	1.3	16
120	Regulation of CO oxidation with Pd additives on Nb2CO2 MXene. International Journal of Hydrogen Energy, 2021, 46, 8477-8485.	3.8	16
121	Interactions of small platinum clusters with the TiC(001) surface. Journal of Applied Physics, 2015, 118,	1.1	15
122	Novel Ag@C nanocables supported Pd anodes and its implication in energy conversion using direct liquid fuel cells. Applied Energy, 2016, 175, 429-434.	5.1	15
123	A Au monolayer on WC(0001) with unexpected high activity towards CO oxidation. Nanoscale, 2018, 10, 4753-4760.	2.8	15
124	TiC supported single-atom platinum catalyst for CO oxidation: A density functional theory study. Applied Surface Science, 2018, 453, 159-165.	3.1	15
125	The mechanisms for the high resistance to sulfur poisoning of the Ni/yttria-stabilized zirconia system treated with Sn vapor. Physical Chemistry Chemical Physics, 2014, 16, 1033-1040.	1.3	14
126	Understanding on the carbon deposition on the Nickel/Yttrium–Stabilized Zirconia anode caused by the CO containing fuels. Journal of Power Sources, 2015, 279, 759-765.	4.0	14

#	Article	IF	CITATIONS
127	Resistance to sulfur poisoning of the gold doped nickel/yttria-stabilized zirconia with interface oxygen vacancy. Journal of Power Sources, 2014, 271, 516-521.	4.0	13
128	First principles study on the adsorption of Au dimer on metal-oxide surfaces: The implications for Au growing. Applied Surface Science, 2017, 426, 554-561.	3.1	13
129	First-principles study of adsorption-induced magnetic properties of InSe monolayers. Applied Surface Science, 2018, 436, 419-423.	3.1	13
130	First principles study of the gas sensing 2D GeTe: atomic, electronic and transport properties. Journal Physics D: Applied Physics, 2018, 51, 345304.	1.3	13
131	CO oxidation on MXene (Mo2CS2) supported single-atom catalyst: A termolecular Eley-Rideal mechanism. Chinese Chemical Letters, 2023, 34, 107412.	4.8	13
132	Growth mechanism and controllable synthesis of graphene on Cu–Ni alloy surface in the initial growth stages. Physics Letters, Section A: General, Atomic and Solid State Physics, 2015, 379, 1361-1365.	0.9	12
133	Effect of Au clustering on ferromagnetism in Au doped TiO2 films: theory and experiments investigation. Journal of Physics and Chemistry of Solids, 2017, 100, 71-77.	1.9	12
134	Activation mechanisms of silver toward CO oxidation by tungsten carbide substrate: A density functional theory study. Physics Letters, Section A: General, Atomic and Solid State Physics, 2019, 383, 2436-2442.	0.9	12
135	Au monolayer on WC(0001) with enhanced activity towards NO oxidation: A theoretical study. Applied Surface Science, 2019, 481, 369-373.	3.1	12
136	Sulfur-Doped g-C ₃ N ₄ -Supported Ni Species with a Wide Temperature Window for Acetylene Semihydrogenation. ACS Sustainable Chemistry and Engineering, 2022, 10, 4849-4861.	3.2	12
137	O2 activation on the outer surface of carbon nanotubes modified by encapsulated iron clusters. Applied Surface Science, 2014, 300, 91-97.	3.1	11
138	Sulfidation and Sulfur Recovery from SO ₂ over Ceria. Journal of Physical Chemistry C, 2014, 118, 17499-17504.	1.5	11
139	The sulfur poisoning of the nickel/oxygen-enriched yttria-stabilized zirconia. Journal of Power Sources, 2015, 293, 635-641.	4.0	11
140	Resistance to sulfur poisoning of Ni-based alloy with coinage (IB) metals. Applied Surface Science, 2015, 357, 1785-1791.	3.1	11
141	A first principles study of O2 dissociation on Pt modified ZrC(100) surface. Chemical Physics Letters, 2016, 649, 141-147.	1.2	11
142	Tuning the Physical and Chemical Properties of 2D InSe with Interstitial Boron Doping: A First-Principles Study. Journal of Physical Chemistry C, 2017, 121, 28312-28316.	1.5	11
143	Platinum adsorption on ceria: A comparative theoretical study of different surfaces. Applied Surface Science, 2017, 394, 47-57.	3.1	11
144	Investigations on the origin of ferromagnetism of Cu doped anatase TiO 2 nanotubes. Materials Research Bulletin, 2017, 86, 287-294.	2.7	11

#	Article	IF	CITATIONS
145	TiC and TiN supported platinum monolayer as high-performance catalysts for CO oxidation: A DFT study. Journal of Chemical Physics, 2018, 149, 054705.	1.2	11
146	Design of Highly Stable and Efficient Bifunctional <i>MX</i> ene-Based Electrocatalysts for Oxygen Reduction and Evolution Reactions. Physical Review Applied, 2021, 15, .	1.5	11
147	First-principles study on the orbital ordering of KCrF3. Physical Review B, 2011, 84, .	1.1	10
148	First-principles study on the mechanism of coking inhibition by the Ni(111) surface doped with IB-group metals at the anode of solid oxide fuel cells. Journal of Power Sources, 2013, 242, 762-767.	4.0	10
149	Design of Efficient Catalysts for CO Oxidation on Titanium Carbide-Supported Platinum via Computational Study. Journal of Physical Chemistry C, 2018, 122, 25974-25982.	1.5	10
150	High activity of Au monolayer doped by Pt atom on WC (0001) surface towards H2 dissociation and high tolerance of sulfur poisoning. Journal of Alloys and Compounds, 2019, 775, 330-334.	2.8	10
151	Improved oxygen reduction activity on the lh Cu@Pt core–shell nanoparticles. Chemical Physics Letters, 2011, 513, 118-123.	1.2	9
152	Unusual Stability and Activity of DI-Pd19 Clusters for O ₂ Dissociation. Journal of Physical Chemistry C, 2012, 116, 19586-19589.	1.5	9
153	Tuning the catalytic activity of Ag–Pd alloy cluster for hydrogen dissociation by controlling the Pd ratio. Computational and Theoretical Chemistry, 2015, 1071, 39-45.	1.1	9
154	The first principles study of the sulfur oxidation on Ni surface with H2O. Journal of Alloys and Compounds, 2018, 741, 1183-1187.	2.8	9
155	Ag monolayer doped by Pt atom on WC (0001) surface: A good catalyst for H2 dissociation with high sulfur tolerance. International Journal of Hydrogen Energy, 2019, 44, 3115-3120.	3.8	9
156	First-principles study on the Cu-Au alloy monolayer supported on WC for hydrogen evolution. Applied Surface Science, 2021, 565, 150568.	3.1	9
157	The effect of Zr-doping on the interaction of water molecules with the ceria (111) surface. Surface Science, 2011, 605, 351-360.	0.8	8
158	The highly active Ce4O8 nanoparticle for CO oxidation. Physics Letters, Section A: General, Atomic and Solid State Physics, 2012, 376, 3235-3240.	0.9	8
159	First-principles investigation of H ₂ S adsorption and dissociation on titanium carbide surfaces. Physical Chemistry Chemical Physics, 2017, 19, 27116-27122.	1.3	8
160	Screening the best catalyst with group 9, 10 and 11 metals monolayer loading on NbC(001) from first-principles study. Journal of Power Sources, 2018, 378, 691-698.	4.0	8
161	High Stability and Reactivity of Single-Metal Atom Catalysts Supported on Yttria-Stabilized Zirconia: The Role of the Surface Oxygen Vacancy. Journal of Physical Chemistry C, 2018, 122, 1622-1630.	1.5	8
162	The mechanism of the high resistance to sulfur poisoning of the rhenium doped nickel/yttria-stabilized zirconia. Applied Surface Science, 2018, 447, 561-568.	3.1	8

#	Article	IF	CITATIONS
163	Understanding the correlation between the electronic structure and catalytic behavior of TiC(001) and TiN(001) surfaces: DFT study. Applied Surface Science, 2019, 494, 57-62.	3.1	8
164	Efficient band structure engineering and visible-light response in ZrS2/GaS heterobilayer by electrical field or external strains. Physics Letters, Section A: General, Atomic and Solid State Physics, 2019, 383, 2969-2973.	0.9	8
165	An electronic perturbation in TiC supported platinum monolayer catalyst for enhancing water–gas shift performance: DFT study. Journal of Physics Condensed Matter, 2019, 31, 305201.	0.7	8
166	The electronic structure and magnetism of KxFe2Se2. Physics Letters, Section A: General, Atomic and Solid State Physics, 2012, 376, 1072-1077.	0.9	7
167	The adsorption and dissociation of O2 on Pd and Pt modified TaC (1 0 0) surface: A first principles study. Applied Surface Science, 2018, 439, 845-851.	3.1	7
168	Low-temperature preferential oxidation of CO over Ag monolayer decorated Mo ₂ C (MXene) for purifying H ₂ . Journal of Physics Condensed Matter, 2019, 31, 215201.	0.7	7
169	Substitution of Fe in hydroxyapatite as an efficient single-atom catalyst for oxygen reduction reaction in biofuel cells: A first-principles study. Applied Surface Science, 2021, 539, 148233.	3.1	7
170	Modulating oxygen electronic orbital occupancy of Cr-based MXenes via transition metal adsorbing for optimal HER activity. International Journal of Hydrogen Energy, 2021, 46, 25457-25467.	3.8	7
171	Ultrafast Kinetics in a PAN/MgFe ₂ O ₄ Flexible Free-Standing Anode Induced by Heterojunction and Oxygen Vacancies. ACS Applied Materials & Interfaces, 2022, 14, 11575-11586.	4.0	7
172	Comparative study of the magnetism of SrTcO3 and Ca(Sr)MnO3. Physics Letters, Section A: General, Atomic and Solid State Physics, 2012, 376, 3313-3316.	0.9	6
173	The Formation and Properties of Pt ₄ Clusters on the Defective Graphene Support. Journal of Nanoscience and Nanotechnology, 2013, 13, 1612-1615.	0.9	6
174	Efficient noble metal nanocatalysts supported on HfC(001) for O2 dissociation. AIP Advances, 2017, 7, .	0.6	6
175	First-principles study for the enhanced sulfur tolerance of Ni(1Â1Â1) surface alloyed with Pb. Surface Science, 2018, 670, 68-71.	0.8	6
176	The possible magnetoelectric coupling induced by adsorption in SnTe films. Applied Surface Science, 2018, 428, 89-93.	3.1	6
177	Enhanced sulfur resistance of Ni(1 1 1) surface alloyed with Ge: A first principles study. Surface Science, 2018, 677, 115-120.	0.8	6
178	Fundamental understanding of electrocatalysis over layered double hydroxides from the aspects of crystal and electronic structures. Nanoscale, 2022, 14, 1107-1122.	2.8	6
179	The search for the good Pd-based catalyst for oxygen reduction reaction: core–shell M4@Pd20 nanowires. Journal of Nanoparticle Research, 2014, 16, 1.	0.8	5
180	Highly efficient Pd-based core–shell nanowire catalysts for O ₂ dissociation. Physical Chemistry Chemical Physics, 2014, 16, 20532-20536.	1.3	5

#	Article	IF	CITATIONS
181	Adsorption and oxidation of sulfur dioxide on the yttria-stabilized zirconia surface: ab initio atomistic thermodynamics study. Physics Letters, Section A: General, Atomic and Solid State Physics, 2014, 378, 659-666.	0.9	5
182	The sulfur tolerance mechanism of the Cu/CeO2 system. International Journal of Hydrogen Energy, 2014, 39, 1957-1966.	3.8	5
183	Efficient metal overlayer catalysts on the Nb2C monolayer for CO oxidation from first-principles screening. Journal of Physics Condensed Matter, 2020, 32, 175201.	0.7	5
184	Manipulation of electronic and magnetic properties of Cr2CX2 (X=F,O,OH) monolayer by applying mechanical strains. Journal of Alloys and Compounds, 2021, 850, 156769.	2.8	5
185	Electronic and catalytic properties of Ti single atoms@SnO2 and its implications on sensing mechanism for CO. Applied Surface Science, 2022, 594, 153500.	3.1	5
186	Potential parent compound of superconductor: Sr2CuM2As2O2 (M=Mn, Fe). Physics Letters, Section A: General, Atomic and Solid State Physics, 2010, 374, 4727-4731.	0.9	4
187	Orbital ordering in Mott-insulators La2O3Fe2Se2 and La2O3Co2Se2. Solid State Communications, 2011, 151, 1231-1235.	0.9	4
188	First-Principles Study on the Initial Oxidization of a Nb(100) Surface. Journal of Physical Chemistry C, 2012, 116, 23371-23376.	1.5	4
189	Effects of substrate defects on the carbon cluster formation in graphene growth on Ni(111) surface. Physics Letters, Section A: General, Atomic and Solid State Physics, 2014, 378, 3055-3059.	0.9	4
190	The origin of the low efficiency of carbon removal from the Nickel/Yttrium–Stabilized Zirconia triple-phase boundary by adsorbed water. Journal of Power Sources, 2015, 279, 224-230.	4.0	4
191	A possible highly active supported Ni dimer catalyst for O2 dissociation: A first-principles study. Applied Surface Science, 2017, 402, 168-174.	3.1	4
192	Density functional study on the high catalytic performance of single metal atoms on the NbC(001) surface. Physical Chemistry Chemical Physics, 2018, 20, 10302-10310.	1.3	4
193	Cooperative activation effect on H2O adsorption in MnO–Co catalyzed steam methane reforming. Physics Letters, Section A: General, Atomic and Solid State Physics, 2019, 383, 1357-1361.	0.9	4
194	The Adsorption of Ag and Sb on Ag(111) Surface. Physica Status Solidi (B): Basic Research, 1999, 212, 281-285.	0.7	3
195	The electronic structure of LaCo ₂ B ₂ . Europhysics Letters, 2011, 95, 17001.	0.7	3
196	Microstructure and magnetic properties of In1â^'xCrxN thin films. Materials Science in Semiconductor Processing, 2015, 31, 147-152.	1.9	3
197	Accelerating oxygen reduction on Pt monolayer via substrate compression. Journal Physics D: Applied Physics, 2017, 50, 435501.	1.3	3
198	A variety of interface and strain tuning electronic properties of the MoS ₂ /Cr ₂ CX ₂ van der Waals heterostructures. Journal Physics D: Applied Physics, 2021, 54, 345105.	1.3	3

#	Article	IF	CITATIONS
199	Enhanced OER activity of FePc molecule by substrate effects: A first principles study. Surface Science, 2022, 717, 122000.	0.8	3
200	Effects of Si-doping on magnetic properties of Ga1â^'xCrxN. Journal of Magnetism and Magnetic Materials, 2015, 374, 564-568.	1.0	2
201	Efficient band structure engineering and visible-light response in SnS2/GaS heterostructure by electric field and biaxial strain. Superlattices and Microstructures, 2019, 134, 106210.	1.4	2
202	Efficient capturing and oxidation of CO through bimetallic surface alloying on WC (0001). Journal of Alloys and Compounds, 2020, 844, 156125.	2.8	2
203	The Catalysis Mechanism of Noble Metals at Electronic Level. Journal of Nanoscience and Nanotechnology, 2010, 10, 7816-7819.	0.9	1
204	Ab initio atomistic thermodynamics study on the sulfur tolerance mechanism of the oxygen-enriched yttria-stabilized zirconia surface. Surface Science, 2014, 622, 16-23.	0.8	1
205	Investigations on the origin of ferromagnetism in Ga 1â^'x Cr x N and Si-doped Ga 1â^'x Cr x N films: Experiments and theory. Journal of Alloys and Compounds, 2016, 658, 800-805.	2.8	1
206	High resistance to sulfur poisoning of Ni with copper skin under electric field. Physics Letters, Section A: General, Atomic and Solid State Physics, 2017, 381, 671-678.	0.9	1
207	A theoretical study of the lowest-energy PtPd co-doped silicon clusters: Chirality and fluxional transformation. Physics Letters, Section A: General, Atomic and Solid State Physics, 2017, 381, 873-878.	0.9	1
208	Density functional study on the resistance to sulfur poisoning of Ptx (x = 0, 1, 4 and 8) modified α-Mo2C(0001) surfaces. Physical Chemistry Chemical Physics, 2017, 19, 24879-24885.	1.3	1
209	Mitigation of CO poisoning on functionalized palladium monolayer supported on titanium carbide. Surface and Coatings Technology, 2020, 402, 125925.	2.2	1
210	Surface vacancy on PtTe2 for promoting CO oxidation through efficiently activating O2. Journal of Physics Condensed Matter, 2020, 32, 025201.	0.7	1
211	Structure and magnetic properties of CrN thin films on La0.67Sr0.33MnO3. Current Applied Physics, 2018, 18, 1320-1326.	1.1	0
212	A monolayer of Pd on ZrC(0 0 1) speeds up O2 dissociation: An ab initio study. Applied Surface Science, 2021, 537, 148050.	3.1	0