Ken Kurosaki

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/3839531/ken-kurosaki-publications-by-year.pdf

Version: 2024-04-20

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

88 10,299 403 43 h-index g-index citations papers 11,306 3.3 441 5.97 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
403	Flexible Thermoelectric Paper and Its Thermoelectric Generator from Bacterial Cellulose/Ag2Se Nanocomposites. <i>ACS Applied Energy Materials</i> , 2022 , 5, 3489-3501	6.1	1
402	A simple method for fabricating flexible thermoelectric nanocomposites based on bacterial cellulose nanofiber and Ag2Se. <i>Applied Physics Letters</i> , 2022 , 120, 073901	3.4	1
401	Enhancement of Thermoelectric Properties of n-Type Bi2Te3\Sex by Energy Filtering Effect. <i>ACS Applied Energy Materials</i> , 2021 , 4, 11819-11826	6.1	3
400	Controlled thermal expansion and thermoelectric properties of Mg2Si/Si composites. <i>Journal of Applied Physics</i> , 2021 , 130, 035105	2.5	
399	The influence of Gd2O3 on shielding, thermal and luminescence properties of WO3td2O3B2O3 glass for radiation shielding and detection material. <i>Radiation Physics and Chemistry</i> , 2021 , 109805	2.5	3
398	Beneficial influence of iodine substitution on the thermoelectric properties of Mo3Sb7. <i>Journal of Applied Physics</i> , 2020 , 127, 105101	2.5	
397	Synthesis, microstructure, multifunctional properties of mayenite CaAlO (C12A7) cement and graphene oxide (GO) composites. <i>Scientific Reports</i> , 2020 , 10, 11077	4.9	11
396	Synthesis of Silicon and Higher Manganese Silicide Bulk Nano-composites and Their Thermoelectric Properties. <i>Journal of Electronic Materials</i> , 2020 , 49, 2920-2927	1.9	3
395	Low temperature heat capacity of Cs2Si4O9. <i>Journal of Nuclear Science and Technology</i> , 2020 , 57, 852-8	5 <u>1</u> 7	1
394	High Thermoelectric Power Factor of SiMg2Si Nanocomposite Ribbons Synthesized by Melt Spinning. <i>ACS Applied Energy Materials</i> , 2020 , 3, 1962-1968	6.1	12
393	Interaction of Liquid CsIO3 with a Polycrystalline UO2 Solid Surface. <i>Transactions of the Atomic Energy Society of Japan</i> , 2020 , 19, 147-151	0.1	
392	Experimental study of the thermoelectric properties of YbH2. <i>Journal of Alloys and Compounds</i> , 2020 , 821, 153496	5.7	1
391	Enhancement of Thermoelectric Figure of Merit of p-Type Nb0.9Ti0.1FeSb Half-Heusler Compound by Nanostructuring. <i>Physica Status Solidi (A) Applications and Materials Science</i> , 2020 , 217, 2000419	1.6	1
390	Neutron Reflector Materials (Be, Hydrides) 2020 , 382-399		1
389	Synthesis and characterization of bulk Silli nanocomposite and comparisons of approaches for enhanced thermoelectric properties in nanocomposites composed of Si and various metal silicides. <i>Journal of Applied Physics</i> , 2020 , 128, 095101	2.5	O
388	Enhancing Thermoelectric Properties of Higher Manganese Silicide (HMS) by Partial Ta Substitution. <i>Journal of Electronic Materials</i> , 2020 , 49, 2726-2733	1.9	3
387	Realizing Excellent n- and p-Type Niobium-Based Half-Heusler Compounds Based on Thermoelectric Properties and High-Temperature Stability. <i>Advanced Electronic Materials</i> , 2020 , 6, 2000	0083	2

(2018-2019)

386	Nanostructured bulk Si for thermoelectrics synthesized by surface diffusion/sintering doping <i>RSC Advances</i> , 2019 , 9, 15496-15501	3.7		
385	Thermal and mechanical properties of U3Si and USi3. <i>Annals of Nuclear Energy</i> , 2019 , 133, 186-193	1.7	2	
384	Si-Based Materials for Thermoelectric Applications. <i>Materials</i> , 2019 , 12,	3.5	7	
383	First-principles calculation study of Mg2XH6 (X=Fe, Ru) on thermoelectric properties. <i>Materials Research Express</i> , 2019 , 6, 085536	1.7	O	
382	Thermal and Electrical Conductivity of Liquid AlBi Alloys. <i>International Journal of Thermophysics</i> , 2019 , 40, 1	2.1	4	
381	Thermophysical and mechanical properties of CrB and FeB. <i>Journal of Nuclear Science and Technology</i> , 2019 , 56, 859-865	1	5	
380	Self-Assembled Nanostructured Bulk Si as High-Performance TE Materials 2019 , 35-77			
379	A first-principles theoretical study on the potential thermoelectric properties of MgH2 and CaH2. <i>Materials Research Express</i> , 2019 , 6, 055510	1.7	1	
378	Density and viscosity of liquid ZrO measured by aerodynamic levitation technique. <i>Heliyon</i> , 2019 , 5, e0.	204 9	17	
377	Wettability of Liquid Cesium Halides on Oxide Single Crystals. <i>Transactions of the Atomic Energy Society of Japan</i> , 2019 , 18, 1-5	0.1	1	
376	Fabrication and Thermoelectric Property of Bi0.88Sb0.12/InSb Eutectic Alloy by Melt Spinning and Spark Plasma Sintering. <i>Materials Transactions</i> , 2019 , 60, 1072-1077	1.3	2	
375	Enhanced Thermoelectric Properties of Ga and Ce Double-Filled p-Type Skutterudites. <i>Materials Transactions</i> , 2019 , 60, 1078-1082	1.3	2	
374	Fabrication and thermoelectric property of nanostructured Si/Cr0.8Mn0.2Si2 eutectic alloy by melt-spinning. <i>Materials Research Express</i> , 2019 , 6, 025702	1.7	2	
373	Recent activities in the field of nuclear materials and nuclear fuels. <i>Journal of Nuclear Science and Technology</i> , 2019 , 56, 147-149	1	1	
372	Tuning valence electron concentration in the Mo13Ge23-Ru2Ge3 pseudobinary system for enhancement of the thermoelectric properties. <i>Journal of Applied Physics</i> , 2019 , 125, 025108	2.5		
371	Thermoelectric Properties of Co- and Mn-Doped Al2Fe3Si3. <i>Journal of Electronic Materials</i> , 2019 , 48, 475-482	1.9	7	
370	Thermal conductivity and electrical resistivity of liquid AgIh alloy. <i>Journal of Nuclear Science and Technology</i> , 2018 , 55, 568-574	1	4	
369	Wettability of liquid caesium iodine and boron oxide on yttria-stabilized zirconia. <i>Journal of Nuclear Science and Technology</i> , 2018 , 55, 838-842	1	4	

368	Thermoelectric Properties of Bulk Yttrium Silicide (YSi2) Fabricated by Arc Melting and Spark Plasma Sintering. <i>Physica Status Solidi (A) Applications and Materials Science</i> , 2018 , 215, 1700769	1.6	1
367	The Nanometer-Sized Eutectic Structure of Si/CrSi2 Thermoelectric Materials Fabricated by Rapid Solidification. <i>Journal of Electronic Materials</i> , 2018 , 47, 2330-2336	1.9	18
366	Ytterbium Silicide (YbSi2): A Promising Thermoelectric Material with a High Power Factor at Room Temperature (Phys. Status Solidi RRL 2/2018). <i>Physica Status Solidi - Rapid Research Letters</i> , 2018 , 12, 1870308	2.5	1
365	Effect of hydrogenation conditions on the microstructure and mechanical properties of zirconium hydride. <i>Journal of Nuclear Materials</i> , 2018 , 500, 145-152	3.3	9
364	Thermal and Mechanical Properties of ⊞-MoSi2 as a High-Temperature Material. <i>Physica Status Solidi (B): Basic Research</i> , 2018 , 255, 1700448	1.3	7
363	Development of thermodynamic databases in the system UZrCeCsEeBCIDH for application to simulating phase equilibria in severe nuclear accidents. <i>Journal of Nuclear Science and Technology</i> , 2018 , 55, 885-899	1	1
362	Naturally decorated dislocations capable of enhancing multiple-phonon scattering in Si-based thermoelectric composites. <i>Journal of Applied Physics</i> , 2018 , 123, 115114	2.5	4
361	Effect of point and planar defects on thermal conductivity of TiO2⊠. <i>Journal of the American Ceramic Society</i> , 2018 , 101, 334-346	3.8	9
360	Thermoelectric Properties of Size-Controlled Si and Metal Silicides Nanocomposites. <i>Journal of Physics: Conference Series</i> , 2018 , 1052, 012124	0.3	1
359	Bi-doped lanthanum molybdate: Enhancing the anharmonicity and reducing the thermal conductivity using Bi3+ with lone pair electrons. <i>Ceramics International</i> , 2018 , 44, 15833-15838	5.1	5
358	Synthesis and Characterization of CeO2-Based Simulated Fuel Containing CsI. <i>Transactions of the Atomic Energy Society of Japan</i> , 2018 , 17, 106-110	0.1	
357	Ytterbium Silicide (YbSi2): A Promising Thermoelectric Material with a High Power Factor at Room Temperature. <i>Physica Status Solidi - Rapid Research Letters</i> , 2018 , 12, 1700372	2.5	7
356	Thermoelectric properties of phosphorus-doped indium tellurosilicate: InSiTe3. <i>Journal of Alloys and Compounds</i> , 2018 , 735, 75-80	5.7	3
355	Chalcopyrite ZnSnSb: A Promising Thermoelectric Material. <i>ACS Applied Materials & Amp; Interfaces</i> , 2018 , 10, 43682-43690	9.5	14
354	High thermoelectric power factor of ytterbium silicon-germanium. <i>Applied Physics Letters</i> , 2018 , 113, 193901	3.4	7
353	Thermoelectric Properties of p-Type Half-Heusler Compounds FeNb0.9M0.1Sb (M = Ti, Zr, Hf). <i>Materials Transactions</i> , 2018 , 59, 1030-1034	1.3	5
352	Enhancement of thermoelectric properties of p-type single-filled skutterudites CexFeyCo4-ySb12 by tuning the Ce and Fe content. <i>AIP Advances</i> , 2018 , 8, 105104	1.5	4
351	Synthesis of High-Density Bulk Tin Monoxide and Its Thermoelectric Properties. <i>Materials Transactions</i> , 2018 , 59, 1022-1029	1.3	4

350	Increased Seebeck Coefficient and Decreased Lattice Thermal Conductivity in Grain-Size-Controlled p-Type PbTeMgTe System. <i>ACS Applied Energy Materials</i> , 2018 , 1, 6586-6592	6.1	8
349	Enhancing thermoelectric properties of p-type SiGe alloy through optimization of carrier concentration and processing parameters. <i>Materials Science in Semiconductor Processing</i> , 2018 , 88, 239-2	<u>4</u> 3	11
348	Thermal and mechanical properties of polycrystalline U3Si2 synthesized by spark plasma sintering. Journal of Nuclear Science and Technology, 2018 , 55, 1141-1150	1	20
347	Physical properties of core-concrete systems: Al 2 O 3 -ZrO 2 molten materials measured by aerodynamic levitation. <i>Journal of Nuclear Materials</i> , 2017 , 487, 121-127	3.3	10
346	Thermoelectric properties of Si-NiSi2 bulk nanocomposites synthesized by a combined method of melt spinning and spark plasma sintering. <i>Journal of Applied Physics</i> , 2017 , 121, 225110	2.5	10
345	Thermoelectric properties of Fe and Al co-added Ge. <i>Japanese Journal of Applied Physics</i> , 2017 , 56, 0455	024	
344	A new semiconductor Al 2 Fe 3 Si 3 with complex crystal structure. <i>Intermetallics</i> , 2017 , 89, 51-56	3.5	14
343	Thermoelectric properties of Si/CoSi2 sub-micrometer composites prepared by melt-spinning technique. <i>Journal of Applied Physics</i> , 2017 , 121, 205107	2.5	10
342	FeNbSb p-type half-Heusler compound: beneficial thermomechanical properties and high-temperature stability for thermoelectrics. <i>Journal of Materials Chemistry C</i> , 2017 , 5, 6677-6681	7.1	30
341	Physical properties of molten core materials: Zr-Ni and Zr-Cr alloys measured by electrostatic levitation. <i>Journal of Nuclear Materials</i> , 2017 , 485, 129-136	3.3	9
340	Enhancement of Thermoelectric Properties of Bulk Si by Dispersing Size-Controlled VSi2. <i>Journal of Electronic Materials</i> , 2017 , 46, 3249-3255	1.9	13
339	Mechanical and thermal properties of ZrSiO4. Journal of Nuclear Science and Technology, 2017, 54, 1267	-1273	20
338	High wettability of liquid caesium iodine with solid uranium dioxide. <i>Scientific Reports</i> , 2017 , 7, 11449	4.9	5
337	The effect of YSi2 nanoinclusion on the thermoelectric properties of p-type SiGe alloy. <i>Physica Status Solidi (A) Applications and Materials Science</i> , 2017 , 214, 1700235	1.6	7
336	Effect of oxygen defects on thermal conductivity of thorium-cerium dioxide solid solutions. <i>Journal of Nuclear Materials</i> , 2017 , 483, 192-198	3.3	5
335	Effect of Ba concentration on phase stability and mechanical and thermal properties of La2Mo2O9. Journal of the European Ceramic Society, 2017 , 37, 281-288	6	9
334	Thermal Conductivity and Electrical Resistivity of Liquid Sn-Bi Alloys. <i>Netsu Bussei</i> , 2017 , 31, 11-16	0.1	2
333	Electronic Structure and Thermoelectric Properties of Pseudogap Intermetallic Compound Al5Co2. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 2017, 81, 55-59	0.4	О

332	Thermoelectric Properties of InxFeCo3Sb12 Consisting Mainly of In-Filled p-Type Skutterudites. <i>Materials Transactions</i> , 2017 , 58, 1207-1211	1.3	3
331	Bottom-up nanostructured silicon for thermoelectrics 2017 , 539-554		
330	Bottom-up nanostructured silicon for thermoelectrics. <i>Series in Materials Science and Engineering</i> , 2017 , 539-554		
329	Thermoelectric Properties of Cr1-xWxSi2. <i>Materials Transactions</i> , 2016 , 57, 1059-1065	1.3	5
328	Thermoelectric properties of gallium-doped p-type germanium. <i>Japanese Journal of Applied Physics</i> , 2016 , 55, 051301	1.4	4
327	Reduction of lattice thermal conductivity of pseudogap intermetallic compound Al3V. <i>Physica Status Solidi (B): Basic Research</i> , 2016 , 253, 469-472	1.3	5
326	Isotope effect and hydrogen content dependence on the heat capacity and thermal conductivity of zirconium hydride and deuteride. <i>Journal of Nuclear Science and Technology</i> , 2016 , 53, 508-512	1	2
325	Role of Nanoscale Precipitates for Enhancement of Thermoelectric Properties of Heavily P-Doped Si-Ge Alloys. <i>Materials Transactions</i> , 2016 , 57, 1070-1075	1.3	2
324	Thermoelectric Properties of (100) Oriented Silicon and Nickel Silicide Nanocomposite Films Grown on Si on Insulator and Si on Quartz Glass Substrates. <i>Materials Transactions</i> , 2016 , 57, 1076-1081	1.3	5
222	Mechanical and Thermal Properties of Fe2B. Transactions of the Atomic Energy Society of Japan,	2 4	7
323	2016 , 15, 223-228	0.1	7
322	2016, 15, 223-228 Enhanced Thermoelectric Properties of Silicon via Nanostructuring. <i>Materials Transactions</i> , 2016, 57, 1018-1021	1.3	22
	Enhanced Thermoelectric Properties of Silicon via Nanostructuring. <i>Materials Transactions</i> , 2016 ,		
322	Enhanced Thermoelectric Properties of Silicon via Nanostructuring. <i>Materials Transactions</i> , 2016 , 57, 1018-1021 Improving thermoelectric properties of bulk Si by dispersing VSi2nanoparticles. <i>Japanese Journal of</i>	1.3	22
322	Enhanced Thermoelectric Properties of Silicon via Nanostructuring. <i>Materials Transactions</i> , 2016 , 57, 1018-1021 Improving thermoelectric properties of bulk Si by dispersing VSi2nanoparticles. <i>Japanese Journal of Applied Physics</i> , 2016 , 55, 061301 Enhanced thermoelectric properties of Ga and In Co-added CoSb3-based skutterudites with	1.3	22
322 321 320	Enhanced Thermoelectric Properties of Silicon via Nanostructuring. <i>Materials Transactions</i> , 2016 , 57, 1018-1021 Improving thermoelectric properties of bulk Si by dispersing VSi2nanoparticles. <i>Japanese Journal of Applied Physics</i> , 2016 , 55, 061301 Enhanced thermoelectric properties of Ga and In Co-added CoSb3-based skutterudites with optimized chemical composition and microstructure. <i>AIP Advances</i> , 2016 , 6, 125015 Thermophysical properties of molten core materials: ZrHe alloys measured by electrostatic	1.3 1.4 1.5	22 8 12
322 321 320 319	Enhanced Thermoelectric Properties of Silicon via Nanostructuring. <i>Materials Transactions</i> , 2016 , 57, 1018-1021 Improving thermoelectric properties of bulk Si by dispersing VSi2nanoparticles. <i>Japanese Journal of Applied Physics</i> , 2016 , 55, 061301 Enhanced thermoelectric properties of Ga and In Co-added CoSb3-based skutterudites with optimized chemical composition and microstructure. <i>AIP Advances</i> , 2016 , 6, 125015 Thermophysical properties of molten core materials: ZrBe alloys measured by electrostatic levitation. <i>Journal of Nuclear Science and Technology</i> , 2016 , 53, 1943-1950 Thermoelectric Properties of p-Type Tl-Filled Skutterudites: Tl x Fe1.5Co2.5Sb12. <i>Journal of</i>	1.3 1.4 1.5	22 8 12 8
322 321 320 319 318	Enhanced Thermoelectric Properties of Silicon via Nanostructuring. <i>Materials Transactions</i> , 2016 , 57, 1018-1021 Improving thermoelectric properties of bulk Si by dispersing VSi2nanoparticles. <i>Japanese Journal of Applied Physics</i> , 2016 , 55, 061301 Enhanced thermoelectric properties of Ga and In Co-added CoSb3-based skutterudites with optimized chemical composition and microstructure. <i>AIP Advances</i> , 2016 , 6, 125015 Thermophysical properties of molten core materials: ZrBe alloys measured by electrostatic levitation. <i>Journal of Nuclear Science and Technology</i> , 2016 , 53, 1943-1950 Thermoelectric Properties of p-Type Tl-Filled Skutterudites: Tl x Fe1.5Co2.5Sb12. <i>Journal of Electronic Materials</i> , 2015 , 44, 1743-1749 Thermoelectric properties of heavily boron- and phosphorus-doped silicon. <i>Japanese Journal of</i>	1.3 1.4 1.5 1	22 8 12 8

314	Thermal and mechanical properties of hydrides of Zr⊞f alloys. <i>Journal of Nuclear Science and Technology</i> , 2015 , 52, 162-170	1	1
313	Thermoelectric properties of Cr1⊠MoxSi2. <i>Journal of Physics and Chemistry of Solids</i> , 2015 , 87, 153-157	3.9	14
312	Mechanical and thermal properties of bulk ZrB2. Journal of Nuclear Materials, 2015, 467, 612-617	3.3	25
311	Effect of Mo content on thermal and mechanical properties of MoRuRhPd alloys. <i>Journal of Nuclear Materials</i> , 2015 , 456, 369-372	3.3	3
310	Enhancement of Thermoelectric Properties of Silicon by Nanoscale Structure Control. <i>Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals</i> , 2015 , 79, 569-572	0.4	1
309	Microstructure and Thermal Conductivity of RuAl2 Prepared by a Single-Roll Melt-Spinning Method. <i>Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals</i> , 2015 , 79, 573-576	0.4	2
308	Thermal Conductivity of β-FeSi2–Si Self-Assembled Nanocomposite. <i>Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals</i> , 2015 , 79, 586-590	0.4	1
307	Thermoelectric properties of Si/SiB3 sub-micro composite prepared by melt-spinning technique. <i>Journal of Applied Physics</i> , 2015 , 118, 065103	2.5	6
306	Properties of Cold-Pressed Metal Hydride Materials for Neutron Shielding in a DII Fusion Reactor. <i>Plasma and Fusion Research</i> , 2015 , 10, 3405021-3405021	0.5	3
305	Phase State and Thermal and Mechanical Properties of Zr-Er Alloys. <i>Transactions of the Atomic Energy Society of Japan</i> , 2015 , 14, 123-127	0.1	
304	Enhancement of thermoelectric properties of CoSb3 skutterudite by addition of Ga and In. Japanese Journal of Applied Physics, 2015 , 54, 111801	1.4	8
303	Synthesis and Characterization of Melt-Spun Metastable Al6Ge5. <i>Journal of Electronic Materials</i> , 2015 , 44, 948-952	1.9	4
302	Thermoelectric properties of Tl-filled Co-free p-type skutterudites: Tlx(Fe,Ni)4Sb12. <i>Journal of Applied Physics</i> , 2014 , 115, 023702	2.5	9
301	The I/Iphase transition in hafnium hydride and deuteride. <i>Journal of Nuclear Science and Technology</i> , 2014 , 1-5	1	
300	Local structure determination of substitutional elements in Ca3Co4MMxO9 (M = Fe, Cr, Ga) using X-ray absorption spectroscopy. <i>Physica Status Solidi (A) Applications and Materials Science</i> , 2014 , 211, 1732-1739	1.6	6
299	The effect of Cr substitution on the structure and properties of misfit-layered Ca3Co4⊠CrxO9+□ thermoelectric oxides. <i>Journal of Alloys and Compounds</i> , 2014 , 588, 199-205	5.7	35
298	Thermophysical properties of BaThO3. <i>Journal of Nuclear Materials</i> , 2014 , 448, 62-65	3.3	5
297	Effect of Ball-Milling Conditions on Thermoelectric Properties of Polycrystalline CuGaTe2. <i>Materials Transactions</i> , 2014 , 55, 1215-1218	1.3	10

296	Thermoelectric Properties of RE5X3(RE=Gd, La, X=Si, Ge). <i>Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals</i> , 2014 , 78, 225-229	0.4	1
295	Thermoelectric Properties of Group 13 Elements-Triple Filled Skutterudites: Nominal InxGa0.02Tl0.20Co4Sb12. <i>Materials Transactions</i> , 2014 , 55, 1232-1236	1.3	3
294	Thermoelectric properties of Au nanoparticle-supported Sb1.6Bi0.4Te3 synthesized by a Fray irradiation method. <i>Physica Status Solidi (B): Basic Research</i> , 2014 , 251, 162-167	1.3	8
293	Enhancement of thermoelectric efficiency of CoSb3-based skutterudites by double filling with K and Tl. <i>Frontiers in Chemistry</i> , 2014 , 2, 84	5	5
292	Bottom-up nanostructured bulk silicon: a practical high-efficiency thermoelectric material. <i>Nanoscale</i> , 2014 , 6, 13921-7	7.7	52
291	Thermoelectric Properties of Ca3Co4-x Ga x O9+IPrepared by Thermal Hydro-decomposition. <i>Journal of Electronic Materials</i> , 2014 , 43, 2064-2071	1.9	6
290	Thermoelectric Properties of CoSb3 Based Skutterudites Filled by Group 13 Elements. <i>Lecture Notes in Nanoscale Science and Technology</i> , 2014 , 301-325	0.3	
289	Thermoelectric Properties of Indium-Added Skutterudites In x Co4Sb12. <i>Journal of Electronic Materials</i> , 2013 , 42, 1463-1468	1.9	21
288	Nanostructuring and Thermoelectric Characterization of (GaSb)3(1🛭)(Ga2Te3) x. <i>Journal of Electronic Materials</i> , 2013 , 42, 1719-1724	1.9	2
287	Effect of Cooling Conditions on the Microstructure and Thermoelectric Properties of Zn/Si-Codoped InSb. <i>Journal of Electronic Materials</i> , 2013 , 42, 2388-2392	1.9	4
286	How thermoelectric properties of p-type Tl-filled skutterudites are improved. <i>APL Materials</i> , 2013 , 1, 032115	5.7	9
285	Low-thermal-conductivity group 13 chalcogenides as high-efficiency thermoelectric materials. <i>Physica Status Solidi (A) Applications and Materials Science</i> , 2013 , 210, 82-88	1.6	34
284	Back Cover: Low-thermal-conductivity group 13 chalcogenides as high-efficiency thermoelectric materials (Phys. Status Solidi A 1/2013). <i>Physica Status Solidi (A) Applications and Materials Science</i> , 2013 , 210,	1.6	1
283	Local structure of Fe in Fe-doped misfit-layered calcium cobaltite: An X-ray absorption spectroscopy study. <i>Journal of Solid State Chemistry</i> , 2013 , 204, 257-265	3.3	19
282	The effect of carbon on the evolution of vacancy defects in electron-irradiated nickel studied by positron annihilation. <i>Journal of Nuclear Materials</i> , 2013 , 434, 198-202	3.3	5
281	Thermophysical properties of BaUO4. <i>Journal of Nuclear Materials</i> , 2013 , 443, 218-221	3.3	
280	Lattice parameter and thermal conductivity of Th1 \square MxO2 \square (M = Y, La, Ce, Nd, Gd and U). <i>Journal of Nuclear Materials</i> , 2013 , 434, 124-128	3.3	19
279	Effects of Hf on Thermal and Mechanical Properties of Zr Hydrides. <i>Transactions of the Atomic Energy Society of Japan</i> , 2013 , 12, 67-75	0.1	1

(2012-2013)

278	Synthesis of silicon and molybdenum ililicide nanocrystal composite films having low thermal conductivity. <i>Thin Solid Films</i> , 2013 , 534, 238-241	2.2	21
277	Thermophysical properties of Th1NUxO2 pellets prepared by spark plasma sintering technique. <i>Journal of Nuclear Science and Technology</i> , 2013 , 50, 181-187	1	22
276	High Temperature Thermoelectric Properties of Half-Heusler Compound PtYSb. <i>Japanese Journal of Applied Physics</i> , 2013 , 52, 041804	1.4	16
275	Characterization and thermomechanical properties of Ln2Zr2O7 (Ln=La, Pr, Nd, Eu, Gd, Dy) and Nd2Ce2O7. <i>Materials Research Society Symposia Proceedings</i> , 2013 , 1514, 139-144		6
274	Reinvestigation the Thermal and Electrical Transport Properties of Tl7Sb2. <i>Advanced Materials Research</i> , 2013 , 802, 284-288	0.5	
273	Reduction of thermal conductivity in semiconducting composite films consisting of silicon and transition-metal silicide nanocrystals. <i>Materials Research Society Symposia Proceedings</i> , 2013 , 1456, 64		3
272	Thermoelectric Properties of Chalcopyrite-Type CuGaTe2with Ag Substituted into the Cu Sites. Japanese Journal of Applied Physics, 2013 , 52, 081801	1.4	12
271	Heavily doped silicon and nickel silicide nanocrystal composite films with enhanced thermoelectric efficiency. <i>Journal of Applied Physics</i> , 2013 , 114, 134311	2.5	30
270	Preparation and characterization of the simulated burnup americium-containing uranium plutonium mixed oxide fuel. <i>Journal of Nuclear Materials</i> , 2012 , 420, 207-212	3.3	5
269	Thermophysical properties of perovskite type alkaline-earth metals and plutonium complex oxides. Journal of Nuclear Materials, 2012 , 422, 163-166	3.3	7
268	- Bismuth Telluride Alloys for Waste Energy Harvesting and Cooling Applications 2012, 137-154		1
267	Enhancement of thermoelectric properties of CoSb3-based skutterudites by double filling of Tl and In. <i>Journal of Applied Physics</i> , 2012 , 112, 043509	2.5	17
266	Synthesis and thermal conductivity of Y6UO12. Journal of Nuclear Science and Technology, 2012, 49, 520	6- <u>Б</u> 30	6
265	High-temperature thermoelectric properties of non-stoichiometric Ag1 kInTe2 with chalcopyrite structure. <i>Materials Science and Engineering B: Solid-State Materials for Advanced Technology</i> , 2012 , 177, 999-1002	3.1	20
264	Thermophysical Properties of Perovskite Type Alkaline Earth Hafnates. <i>Ceramic Transactions</i> , 2012 , 69-	7 6 .1	
263	Neutron Reflector Materials (Be, Hydrides) 2012 , 307-321		3
262	Thermoelectric properties and microstructures of AgSbTe2-added p-type Pb0.16Ge0.84Te. <i>Physica Status Solidi (A) Applications and Materials Science</i> , 2012 , 209, 167-170	1.6	6
261	High-temperature thermoelectric properties of Cu2In4Te7. <i>Physica Status Solidi - Rapid Research Letters</i> , 2012 , 6, 154-156	2.5	10

260	Ab initio study of hydrogen diffusion in zirconium oxide. <i>Journal of Nuclear Science and Technology</i> , 2012 , 49, 544-550	1	19
259	Chalcopyrite CuGaTe(2): a high-efficiency bulk thermoelectric material. <i>Advanced Materials</i> , 2012 , 24, 3622-6	24	245
258	Effects of the Defects on the Thermoelectric Properties of Culhlle Chalcopyrite-Related Compounds. <i>Japanese Journal of Applied Physics</i> , 2012 , 51, 121803	1.4	3
257	Thermal Conductivity of Size-Controlled Bulk Silicon Nanocrystals Using Self-Limiting Oxidation and HF Etching. <i>Applied Physics Express</i> , 2012 , 5, 081302	2.4	5
256	Thermoelectric properties of Zn-doped GaSb. Journal of Applied Physics, 2012, 111, 043704	2.5	16
255	High-temperature thermoelectric properties of Cu1IInTe2 with a chalcopyrite structure. <i>Applied Physics Letters</i> , 2012 , 100, 042108	3.4	65
254	Effect of Cu Doping into the Ga Site on the Thermoelectric Properties of AgGaTe2 with Chalcopyrite Structure. Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy, 2012, 59, 206-209	0.2	2
253	Thermoelectric Properties of ^ ^alpha;-Ag9GaTe6. <i>Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals</i> , 2012 , 76, 504-507	0.4	2
252	Effect of Phase Transition on the Thermoelectric Properties of Ag2Te. <i>Materials Transactions</i> , 2012 , 53, 1216-1219	1.3	26
251	Effect of the Amount of Vacancies on the Thermoelectric Properties of Cu–Ga–Te Ternary Compounds. <i>Materials Transactions</i> , 2012 , 53, 1212-1215	1.3	24
250	Reduction in Lattice Thermal Conductivity of InSb by Formation of the ZnIn18GeSb20 Alloy. <i>Materials Transactions</i> , 2012 , 53, 1976-1980	1.3	
249	Thermodynamic Equilibrium Calculations on the Oxidation Behavior of the Mo-Ru-Rh-Pd Alloys. <i>Transactions of the Atomic Energy Society of Japan</i> , 2012 , 11, 30-36	0.1	2
248	Effects of the Defects on the Thermoelectric Properties of Culhlle Chalcopyrite-Related Compounds. <i>Japanese Journal of Applied Physics</i> , 2012 , 51, 121803	1.4	7
247	Thermoelectric properties of Ga-added CoSb3 based skutterudites. <i>Journal of Applied Physics</i> , 2011 , 110, 013521	2.5	33
246	Reduction of thermal conductivity in PbTe:Tl by alloying with TlSbTe2. <i>Physical Review B</i> , 2011 , 83,	3.3	24
245	Thermoelectric properties of Zn-Sn-Sb based alloys. <i>Materials Research Society Symposia Proceedings</i> , 2011 , 1314, 1		6
244	Effects of Tl-filling into the voids and Rh substitution for Co on the thermoelectric properties of CoSb3. <i>Journal of Alloys and Compounds</i> , 2011 , 509, 1084-1089	5.7	8
243	Synthesis and high-temperature thermoelectric properties of Ni3GaSb and Ni3InSb. <i>Journal of Alloys and Compounds</i> , 2011 , 509, 4014-4017	5.7	5

242	Synthesis and thermal conductivities of ZnIn2Te4 and CdIn2Te4 with defect-chalcopyrite structure. Journal of Alloys and Compounds, 2011 , 509, 7484-7487	5.7	10
241	Enhancement of the Thermoelectric Performance by Controlling the Distribution of the Structural Vacancies. <i>Materia Japan</i> , 2011 , 50, 146-148	0.1	
240	Thermophysical properties of SrUO4. <i>Journal of Nuclear Materials</i> , 2011 , 419, 353-356	3.3	1
239	Thermal conductivity of Y6WO12 and Yb6WO12 ceramics. <i>Journal of Nuclear Materials</i> , 2011 , 419, 357-	3603	5
238	Oxygen non-stoichiometries in (Th0.7Ce0.3)O2\(\mathbb{\text{\Bar}}\). Journal of Nuclear Materials, 2011 , 408, 285-288	3.3	3
237	Effect of Vacancy Distribution on the Thermal Conductivity of Ga2Te3 and Ga2Se3. <i>Journal of Electronic Materials</i> , 2011 , 40, 999-1004	1.9	34
236	Thermal conductivity of BaPuO3 at temperatures from 300 to 1500K. <i>Journal of Nuclear Materials</i> , 2011 , 414, 316-319	3.3	15
235	Thermoelectric properties of Ag1NGaTe2 with chalcopyrite structure. <i>Applied Physics Letters</i> , 2011 , 99, 061902	3.4	95
234	High-temperature thermoelectric properties of Cu2Ga4Te7 with defect zinc-blende structure. <i>Applied Physics Letters</i> , 2011 , 98, 172104	3.4	25
233	Phase State and Physical Properties of the Mo-Ru-Ph-Pd Alloys. <i>Materials Research Society Symposia Proceedings</i> , 2011 , 1298, 41		
232	Chemical States of Fission Products and Actinides in Irradiated Oxide Fuels Analyzed by Thermodynamic Calculation and Post-Irradiation Examination. <i>Progress in Nuclear Science and Technology</i> , 2011 , 2, 5-8	0.3	12
231	Effects of Zr/Gd Ratio and Hydrogen Content on the Mechanical and Thermal Properties of Hydrides of Zr-Gd Alloys. <i>Transactions of the Atomic Energy Society of Japan</i> , 2011 , 10, 48-54	0.1	
230	Thermal Conductivity Analysis of the Complex Oxides Composed of Alkali or Alkaline-Earth Metals and Molybdenum. <i>Transactions of the Atomic Energy Society of Japan</i> , 2010 , 9, 21-28	0.1	3
229	Thermoelectric Properties of CoSb3-based Skutterudite Compounds. <i>Materials Research Society Symposia Proceedings</i> , 2010 , 1267, 1		
228	Thermal expansion and melting temperature of the half-Heusler compounds: MNiSn (M=Ti, Zr, Hf). Journal of Alloys and Compounds, 2010 , 489, 328-331	5.7	75
227	Synthesis and thermoelectric properties of silicon- and manganese-doped Ru1⊠FexAl2. <i>Journal of Alloys and Compounds</i> , 2010 , 493, 17-21	5.7	23
226	Thermoelectric properties of gold telluride: AuTe2. <i>Journal of Alloys and Compounds</i> , 2010 , 496, 53-55	5.7	9
225	Synthesis, mechanical and magnetic properties of transition metals-doped Ca3Co3.8M0.2O9. Journal of Alloys and Compounds, 2010, 503, 431-435	5.7	50

224	Thermomechanical properties of calcium series perovskite-type oxides. <i>Journal of Alloys and Compounds</i> , 2010 , 504, 201-204	5.7	23
223	Effect of (Pb,Ge)Te Addition on the Phase Stability and the Thermoelectric Properties of AgSbTe2. <i>Materials Research Society Symposia Proceedings</i> , 2010 , 1267, 1		2
222	High-temperature thermoelectric properties of thallium-filled skutterudites. <i>Applied Physics Letters</i> , 2010 , 96, 202107	3.4	41
221	Effect of Rh Substitution for Co on the Thermoelectric Properties of CoSb3. <i>Materials Transactions</i> , 2010 , 51, 882-886	1.3	4
220	Thermomechanical Properties of Hafnium Hydride. <i>Journal of Nuclear Science and Technology</i> , 2010 , 47, 156-159	1	12
219	Oxygen Potential of (Th0.7Ce0.3)O2-x. <i>Materials Research Society Symposia Proceedings</i> , 2009 , 1215, 1		
218	Thermal Conductivity Characterization in Bulk Zn(Mn,Ga)O4with Self-Assembled Nanocheckerboard Structures. <i>Japanese Journal of Applied Physics</i> , 2009 , 48, 010201	1.4	5
217	Thermal Conductivities of Cs-M-O (M = Mo or U) Ternary Compounds. <i>Materials Research Society Symposia Proceedings</i> , 2009 , 1215, 1		
216	Effect of Americium and Simulated Fission Products Addition on Oxygen Potential of Uranium-Plutonium Mixed Oxide Fuels. <i>Materials Research Society Symposia Proceedings</i> , 2009 , 1215, 1		
215	Thermal and Mechanical Properties of Hf Hydrides with Various Hydrogen Content. <i>Materials Research Society Symposia Proceedings</i> , 2009 , 1215, 1		
214	Mechanical properties at sub-microscale and macroscale of polycrystalline uranium mononitride. Journal of Nuclear Materials, 2009 , 384, 6-11	3.3	8
213	Thermal and mechanical properties of (U,Er)O2. <i>Journal of Nuclear Materials</i> , 2009 , 389, 115-118	3.3	19
212	Thermoelectric Characterization of (Ga,In)2Te3 with Self-Assembled Two-Dimensional Vacancy Planes. <i>Journal of Electronic Materials</i> , 2009 , 38, 1392-1396	1.9	26
211	Thermoelectric Properties of TlCu3Te2 and TlCu2Te2. <i>Journal of Electronic Materials</i> , 2009 , 38, 1350-13	3 53 9	4
210	Solid-State Self-Assembly of Nanostructured Oxide as a Candidate High-Performance Thermoelectric Material. <i>Journal of Electronic Materials</i> , 2009 , 38, 1303-1308	1.9	2
209	Effect of Nd and Pr addition on the thermal and mechanical properties of (U,Ce)O2. <i>Journal of Nuclear Materials</i> , 2009 , 389, 85-88	3.3	10
208	Thermophysical properties of (U,Y)O2. <i>Journal of Nuclear Materials</i> , 2009 , 389, 155-159	3.3	
207	Fabrication and mechanical characterization of zirconium and gadolinium hydrides. <i>Journal of Nuclear Materials</i> , 2009 , 389, 170-172	3.3	3

(2008-2009)

206	Thermophysical properties of several nitrides prepared by spark plasma sintering. <i>Journal of Nuclear Materials</i> , 2009 , 389, 186-190	3.3	34
205	Thermal transport properties of hafnium hydrides and deuterides. <i>Journal of Nuclear Materials</i> , 2009 , 392, 464-470	3.3	3
204	Effect of periodicity of the two-dimensional vacancy planes on the thermal conductivity of bulk Ga2Te3. <i>Physica Status Solidi - Rapid Research Letters</i> , 2009 , 3, 221-223	2.5	12
203	Ag8SiTe6: A New Thermoelectric Material with Low Thermal Conductivity. <i>Japanese Journal of Applied Physics</i> , 2009 , 48, 011603	1.4	22
202	High-temperature thermoelectric properties of Nb-doped MNiSn (M = Ti, Zr) half-Heusler compound. <i>Journal of Alloys and Compounds</i> , 2009 , 469, 50-55	5.7	83
201	Effect of Nb substitution for V on the thermoelectric properties of Fe2VAl. <i>Journal of Alloys and Compounds</i> , 2009 , 486, 507-510	5.7	16
200	Thermoelectric Properties of the Thallium-Tellurium Binary Compounds. <i>Materials Transactions</i> , 2009 , 50, 1582-1585	1.3	7
199	Thermal Conductivity of the Ternary Compounds: AgMTe2 and AgM5Te8 (M = Ga or In). <i>Materials Transactions</i> , 2009 , 50, 1603-1606	1.3	20
198	Thermal Conductivity of Hafnium Hydride. <i>Journal of Nuclear Science and Technology</i> , 2009 , 46, 814-818	3 1	13
197	Unexpectedly low thermal conductivity in natural nanostructured bulk Ga2Te3. <i>Applied Physics Letters</i> , 2008 , 93, 012101	3.4	62
196	Mechanical Properties of Ca0.9Yb0.1MnO3/Ag Composites for n-Type Legs of Thermoelectric Oxide Devices. <i>Japanese Journal of Applied Physics</i> , 2008 , 47, 6399-6403	1.4	17
195	Substitution effect on the thermoelectric properties of p-type half-Heusler compounds: ErNi1\(\text{P}\) dxSb. <i>Journal of Applied Physics</i> , 2008 , 104, 013714	2.5	20
194	Systematic investigation of the thermoelectric properties of TlMTe2 (M=Ga, In, or Tl). <i>Journal of Applied Physics</i> , 2008 , 104, 073705	2.5	16
193	Thermoelectric Properties of La-Doped BaSi2. <i>Materials Transactions</i> , 2008 , 49, 1737-1740	1.3	8
192	Thermoelectric Properties of Tl8GeTe5 with Low Thermal Conductivity. <i>Materials Transactions</i> , 2008 , 49, 1728-1730	1.3	1
191	Thermal and mechanical properties of uranium nitride prepared by SPS technique. <i>Journal of Materials Science</i> , 2008 , 43, 6429-6434	4.3	42
190	Thermal properties of polycrystalline NdN bulk samples with various porosities. <i>Journal of Nuclear Materials</i> , 2008 , 376, 83-87	3.3	6
189	Thermal conductivity of titanium dioxide films grown by metal-organic chemical vapor deposition. <i>Surface and Coatings Technology</i> , 2008 , 202, 3067-3071	4.4	36

188	Enhancement of thermoelectric efficiency in PbTe by distortion of the electronic density of states. <i>Science</i> , 2008 , 321, 554-7	33.3	2900
187	Reinvestigation of the thermoelectric properties of Ag8GeTe6. <i>Physica Status Solidi - Rapid Research Letters</i> , 2008 , 2, 65-67	2.5	28
186	High-Thermoelectric Figure of Merit Realized in p-Type Half-Heusler Compounds: ZrCoSnxSb1-x. <i>Japanese Journal of Applied Physics</i> , 2007 , 46, L673-L675	1.4	64
185	Fabrication and Thermoelectric Properties of Ag9TlTeX (X=5.0∼6.0). <i>Materials Transactions</i> , 2007 , 48, 2083-2087	1.3	8
184	Effect of Sn doping on the thermoelectric properties of ErNiSb-based p-type half-Heusler compound. <i>Applied Physics Letters</i> , 2007 , 91, 062115	3.4	33
183	Prediction of oxygen potential in americium thorium oxides phase of a cermet fuel. <i>Journal of Nuclear Materials</i> , 2007 , 362, 374-382	3.3	5
182	Thermophysical properties of BaY2O4: A new candidate material for thermal barrier coatings. <i>Materials Letters</i> , 2007 , 61, 2303-2306	3.3	20
181	Preparation of Nitride Fuel by Spark Plasma Sintering Technique. <i>Materials Research Society Symposia Proceedings</i> , 2007 , 1043, 1		2
180	Enhancement of thermoelectric figure of merit of AgTlTe by tuning the carrier concentration. <i>Journal of Applied Physics</i> , 2007 , 102, 023707	2.5	15
179	High-temperature Hall measurements of lanthanide based ternary intermetallics. <i>Journal of Applied Physics</i> , 2007 , 102, 023705	2.5	7
178	Thermoelectric properties of alkaline-earth silicides 2007,		1
177	Thermoelectric properties of BaSi2, SrSi2, and LaSi. <i>Journal of Applied Physics</i> , 2007 , 102, 063703	2.5	43
176	Thermoelectric properties of p-type half-Heusler compound: Sn-doped ErNiSb 2007,		1
175	Thallium-Free Thermoelectric Materials with Extremely Low Thermal Conductivity. <i>Materials Research Society Symposia Proceedings</i> , 2007 , 1044, 1		2
174	Thermophysical Properties of PuO2 and AmO2 Solid Solutions Simulated by Molecular Dynamics. <i>Materials Research Society Symposia Proceedings</i> , 2007 , 1043, 1		
173	Indentation study of titanium, zirconium, and hafnium hydrides. <i>Materials Research Society Symposia Proceedings</i> , 2007 , 1043, 1		1
172	Modeling and Simulation of Thermophysical Properties of Minor Actinides-Containing Oxide Fuels. <i>Materials Research Society Symposia Proceedings</i> , 2007 , 1043, 1		
171	Thermal Properties of Simulated High Burn up Nitride Fuels and Nitride ADS Targets. <i>Materials Research Society Symposia Proceedings</i> , 2007 , 1043, 1		

170	Thermodynamic Modeling of Plutonium Oxide Containing Americium. <i>Materials Research Society Symposia Proceedings</i> , 2007 , 1043, 1		
169	Thermoelectric Properties of La-doped BaSi2 and (Ba,Sr)Si2 Solid Solutions. <i>Materials Research Society Symposia Proceedings</i> , 2007 , 1044, 1		
168	Thermoelectric Properties of Half-Heusler Type LaPdBi and GdPdBi. <i>Materials Transactions</i> , 2007 , 48, 2079-2082	1.3	14
167	Thermoelectric Properties of Lanthanide Based Intermetallics. <i>Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy</i> , 2007 , 54, 370-374	0.2	2
166	Chemical thermodynamic analysis of americium-containing UO2 and (U,Pu)O2. <i>Journal of Alloys and Compounds</i> , 2007 , 428, 355-361	5.7	16
165	Effect of porosity on thermal and electrical properties of polycrystalline bulk ZrN prepared by spark plasma sintering. <i>Journal of Alloys and Compounds</i> , 2007 , 432, 7-10	5.7	65
164	Phase behavior of PuO2\(\text{W}\) with addition of 9% Am. <i>Journal of Alloys and Compounds</i> , 2007 , 444-445, 610-613	5.7	16
163	Molecular Dynamics Study on Defect Structure of Gadolinia-Doped Thoria. <i>Journal of Nuclear Science and Technology</i> , 2007 , 44, 1543-1549	1	6
162	Computer Simulation Makes Atomic-Design of Nuclear Fuel; Molecular Dynamic Studies of Nuclear Fuels. <i>Atomos</i> , 2007 , 49, 676-680	O	
161	Molecular Dynamics Studies of Americium-Containing Mixed Oxide Fuels. <i>Journal of Nuclear Science and Technology</i> , 2006 , 43, 1224-1227	1	9
160	Lanthanide Based Ternary Intermetallics as Advanced Thermoelectric Materials. <i>Materials Research Society Symposia Proceedings</i> , 2006 , 980, 44		
159	Transport properties of niobium doped MNiSn (M = Ti, Zr) 2006 ,		1
158	2006,		1
157	LnPdSb (Ln=La,Gd): Promising intermetallics with large carrier mobility for high performance p-type thermoelectric materials. <i>Applied Physics Letters</i> , 2006 , 89, 092108	3.4	15
156	Thermoelectric properties of TIXIIe (X=Ge, Sn, and Pb) compounds with low lattice thermal conductivity. <i>Journal of Applied Physics</i> , 2006 , 99, 063705	2.5	31
155	Thermoelectric and thermophysical properties of ErPdX (X=Sb and Bi) half-Heusler compounds. <i>Journal of Applied Physics</i> , 2006 , 99, 103701	2.5	39
154	Effect of carrier doping on the thermal conductivity of MNiSn based half-Heusler alloy 2006,		1
153	Thermoelectric properties of calcium silicides 2006 ,		5

152	Thermoelectric and Thermophysical Characteristics of Cu2Te-Tl2Te Pseudo Binary System. <i>Materials Transactions</i> , 2006 , 47, 1432-1435	1.3	24
151	Thermal and mechanical properties of perovskite-type barium hafnate. <i>Journal of Alloys and Compounds</i> , 2006 , 407, 44-48	5.7	70
150	Thermoelectric power and electrical resistivity of Ag-doped Na1.5Co2O4. <i>Journal of Alloys and Compounds</i> , 2006 , 407, 314-317	5.7	32
149	Thermoelectric properties of Sn-doped TiCoSb half-Heusler compounds. <i>Journal of Alloys and Compounds</i> , 2006 , 407, 326-329	5.7	69
148	Thermal conductivity analysis of BaUO3 and BaZrO3 by semiempirical molecular dynamics simulation. <i>Journal of Alloys and Compounds</i> , 2006 , 407, 49-52	5.7	9
147	Thermoelectric properties of NaxCo2O4/Ag composites. <i>Journal of Alloys and Compounds</i> , 2006 , 414, 293-297	5.7	19
146	Thermal and mechanical properties of polycrystalline BaSnO3. <i>Journal of Alloys and Compounds</i> , 2006 , 416, 214-217	5.7	91
145	Thermoelectric properties of p-type (AgSbTe2)x(Pb0.5Sn0.5Te)1 \blacksquare (x=0.05, 0.09, 0.2). <i>Journal of Alloys and Compounds</i> , 2006 , 416, 218-221	5.7	17
144	Effect of sintering temperature on the thermoelectric properties of NaxCo2O4. <i>Journal of Alloys and Compounds</i> , 2006 , 416, 291-295	5.7	15
143	The low-temperature heat capacity and entropy of SrZrO3 and BaZrO3. <i>Journal of Alloys and Compounds</i> , 2006 , 424, 1-3	5.7	19
142	Electrical and thermal properties of titanium hydrides. <i>Journal of Alloys and Compounds</i> , 2006 , 420, 25-2	28 .7	43
141	Photoelectrochemical study of lanthanide zirconium oxides, Ln2Zr2O7 (Ln=La, Ce, Nd and Sm). Journal of Alloys and Compounds, 2006 , 420, 291-297	5.7	89
140	Physical properties of polycrystalline SrVO3\(\text{IJournal of Alloys and Compounds}\), 2006 , 426, 46-50	5.7	34
139	Effect of electronegativity on the mechanical properties of metal hydrides with a fluorite structure. <i>Journal of Alloys and Compounds</i> , 2006 , 426, 67-71	5.7	16
138	Thermoelectric and Thermophysical Properties of TiCoSb-ZrCoSb-HfCoSb Pseudo Ternary System Prepared by Spark Plasma Sintering. <i>Materials Transactions</i> , 2006 , 47, 1445-1448	1.3	35
137	Microscale Seebeck Scanning of Polycrystalline Samples of N-Type AgPb18SbTe20 and P-Type AgPb9Sn9SbTe20. <i>Materials Transactions</i> , 2006 , 47, 1440-1444	1.3	5
136	Substitution Effect on Thermoelectric Properties of ZrNiSn Based Half-Heusler Compounds. <i>Materials Transactions</i> , 2006 , 47, 1453-1457	1.3	51
135	Compositional Difference of Thermoelectric Properties in Ag9TlTe5. <i>Materials Transactions</i> , 2006 , 47, 1938-1940	1.3	8

(2005-2006)

134	Characterization of simulated burnup fuel by nanoindentation. <i>Journal of Nuclear Materials</i> , 2006 , 350, 203-207	3.3	7	
133	Oxygen potential of (Pu0.91Am0.09)O2⊠. <i>Journal of Nuclear Materials</i> , 2006 , 357, 69-76	3.3	26	
132	Porosity influence on the mechanical properties of polycrystalline zirconium nitride ceramics. <i>Journal of Nuclear Materials</i> , 2006 , 358, 106-110	3.3	30	
131	Study on the formation process of titania nanohole arrays. <i>Journal of Alloys and Compounds</i> , 2005 , 386, 265-269	5.7	17	
130	Thermoelectric properties of ZrNiSn based half Heusler compounds 2005,		6	
129	Thermoelectric properties of n-type Ag-Pb-Sb-Te compounds 2005 ,		1	
128	Thermoelectric and thermophysical properties of TiCoSb, ZrCoSb, HfCoSb prepared by SPS 2005,		5	
127	Nanoindentation tests for TiO2, MgO, and YSZ single crystals. <i>Journal of Alloys and Compounds</i> , 2005 , 386, 261-264	5.7	27	
126	Electrical properties of Ag1 \square Pb18SbTe20 (x = 0, 0.1, 0.3). <i>Journal of Alloys and Compounds</i> , 2005 , 386, 315-318	5.7	22	
125	Molecular dynamics studies of neptunium dioxide. <i>Journal of Alloys and Compounds</i> , 2005 , 387, 9-14	5.7	21	
124	Thermoelectric properties of Ag1 \square Pb18SbTe20 (x = 0, 0.1, 0.3). <i>Journal of Alloys and Compounds</i> , 2005 , 387, 52-55	5.7	34	
123	Thermoelectric properties of perovskite type strontium ruthenium oxide. <i>Journal of Alloys and Compounds</i> , 2005 , 387, 56-59	5.7	34	
122	Electrical properties of ⊞- and ⊞ag2Te. <i>Journal of Alloys and Compounds</i> , 2005 , 387, 297-299	5.7	37	
121	Thermoelectric properties of BaCu2S2. <i>Journal of Alloys and Compounds</i> , 2005 , 388, 122-125	5.7	15	
120	Thermal and electrical properties of perovskite-type strontium molybdate. <i>Journal of Alloys and Compounds</i> , 2005 , 390, 314-317	5.7	25	
119	Thermoelectric properties of stoichiometric Ag1⊠Pb18SbTe20 (x = 0, 0.1, 0.2). <i>Journal of Alloys and Compounds</i> , 2005 , 391, 288-291	5.7	34	
118	Thermoelectric properties of reduced and La-doped single-crystalline SrTiO3. <i>Journal of Alloys and Compounds</i> , 2005 , 392, 306-309	5.7	148	
117	Thermoelectric properties of ⊞- and FAg2Te. <i>Journal of Alloys and Compounds</i> , 2005 , 393, 299-301	5.7	69	

116	A molecular dynamics study of thorium nitride. <i>Journal of Alloys and Compounds</i> , 2005 , 394, 312-316	5.7	16
115	Annealing effect on thermoelectric properties of TiCoSb half-Heusler compound. <i>Journal of Alloys and Compounds</i> , 2005 , 394, 122-125	5.7	41
114	Extremely low thermal conductivity of AgTlTe. Journal of Alloys and Compounds, 2005, 395, 304-306	5.7	14
113	Thermal properties of polycrystalline sintered SrY2O4. <i>Journal of Alloys and Compounds</i> , 2005 , 395, 318	-32/1	22
112	A molecular dynamics study of zirconium nitride. <i>Journal of Alloys and Compounds</i> , 2005 , 396, 260-263	5.7	10
111	Thermoelectric properties of Ag8GeTe6. Journal of Alloys and Compounds, 2005, 396, 280-282	5.7	27
110	Oxygen potentials of (U0.685Pu0.270Am0.045)O2\(\mathbb{Q}\) solid solution. <i>Journal of Alloys and Compounds</i> , 2005 , 397, 110-114	5.7	26
109	Effect of spark plasma sintering temperature on thermoelectric properties of (Ti,Zr,Hf)NiSn half-Heusler compounds. <i>Journal of Alloys and Compounds</i> , 2005 , 397, 296-299	5.7	43
108	Thermophysical properties of SrY2O4. Journal of Alloys and Compounds, 2005, 398, 304-308	5.7	19
107	Thermal and electrical properties of zirconium nitride. <i>Journal of Alloys and Compounds</i> , 2005 , 399, 242-	·2 5 1 7 1	40
106	Mechanical properties of Ag-doped Na1.5Co2O4. <i>Journal of Alloys and Compounds</i> , 2005 , 403, 308-311	5.7	8
105	Thermoelectric Properties of (Ti,Zr,Hf)CoSb Type Half-Heusler Compounds. <i>Materials Transactions</i> , 2005 , 46, 1481-1484	1.3	40
104	Thermoelectric Properties of Thallium Compounds with Extremely Low Thermal Conductivity. <i>Materials Transactions</i> , 2005 , 46, 1502-1505	1.3	21
103	Thermoelectric Properties of Lanthanum-Doped Europium Titanate. <i>Materials Transactions</i> , 2005 , 46, 1466-1469	1.3	17
102	Molecular dynamics studies of actinide nitrides. <i>Journal of Nuclear Materials</i> , 2005 , 344, 45-49	3.3	14
101	Thermochemical and thermophysical properties of alkaline-earth perovskites. <i>Journal of Nuclear Materials</i> , 2005 , 344, 61-66	3.3	95
100	Thermodynamic modelling of the (U,Pu,Np)O2∃x mixed oxide. <i>Journal of Nuclear Materials</i> , 2005 , 344, 84-88	3.3	8
99	Chemical thermodynamic representation of (U, Pu, Am)O2⊠. <i>Journal of Nuclear Materials</i> , 2005 , 344, 230-234	3.3	11

(2004-2005)

98	Influence of additive elements on the terminal solid solubility of hydrogen for Zirconium alloy. <i>Journal of Nuclear Materials</i> , 2005 , 344, 291-294	3.3	10
97	Thermal properties of yttrium hydride. <i>Journal of Nuclear Materials</i> , 2005 , 344, 295-297	3.3	11
96	Thermal properties of titanium hydrides. <i>Journal of Nuclear Materials</i> , 2005 , 344, 298-300	3.3	24
95	Thermophysical Properties of Perovskite-Type Strontium Cerate and Zirconate. <i>Journal of the American Ceramic Society</i> , 2005 , 88, 1496-1499	3.8	44
94	Thermoelectric Properties of BaCu2S2 ChemInform, 2005, 36, no		1
93	Thermoelectric Properties of Tl-X-Te (X=Pb, Sn, Ge) Systems. <i>Materials Research Society Symposia Proceedings</i> , 2005 , 886, 1		1
92	High Temperature Thermoelectric Properties of LnPdX (Ln = lanthanide; X = Sb, Bi) Ternary Compounds. <i>Materials Research Society Symposia Proceedings</i> , 2005 , 886, 1		1
91	Ag9TlTe5: A high-performance thermoelectric bulk material with extremely low thermal conductivity. <i>Applied Physics Letters</i> , 2005 , 87, 061919	3.4	209
90	Thermoelectric properties of potassium-doped BaCu2S2 with natural superlattice structure. <i>Journal of Applied Physics</i> , 2005 , 97, 053705	2.5	13
89	Extremely Low Thermal Conductivity Substances as Novel Thermoelectric Materials. <i>Materials Research Society Symposia Proceedings</i> , 2005 , 886, 1		4
88	Thermoelectric Properties of Tl2Te-Sb2Te3 Pseudo-Binary System. <i>Materials Research Society Symposia Proceedings</i> , 2005 , 886, 1		
87	Thermoelectric Properties of Ag-Tl-Te Ternary System. <i>Materials Research Society Symposia Proceedings</i> , 2005 , 886, 1		1
86	Phase relation assessment for OPuD ternary system. Journal of Nuclear Materials, 2004, 326, 185-194	3.3	9
85	Design and development of MH actuator system. Sensors and Actuators A: Physical, 2004, 113, 118-123	3.9	15
84	Thermophysical properties of SrHfO3 and SrRuO3. Journal of Solid State Chemistry, 2004, 177, 3484-34	89 .3	96
83	Molecular Dynamics Studies of Minor Actinide Dioxides. <i>Journal of Nuclear Science and Technology</i> , 2004 , 41, 827-831	1	13
82	Photoelectrochemical study of hydrogen in Zircalloy-2 oxide films. <i>Journal of Alloys and Compounds</i> , 2004 , 368, 18-21	5.7	1
81	Thermoelectric properties of doped BaTiO3BrTiO3 solid solution. <i>Journal of Alloys and Compounds</i> , 2004 , 368, 22-24	5.7	104

80	Thermoelectric properties of perovskite type barium molybdate. <i>Journal of Alloys and Compounds</i> , 2004 , 372, 65-69	5.7	39
79	Fabrication of oxide nanohole arrays by a liquid phase deposition method. <i>Journal of Alloys and Compounds</i> , 2004 , 373, 312-315	5.7	32
78	Thermoelectric properties of thallium antimony telluride. <i>Journal of Alloys and Compounds</i> , 2004 , 376, 43-48	5.7	55
77	High temperature thermoelectric properties of CoNb1NHfxSn1DSby half-Heusler compounds. <i>Journal of Alloys and Compounds</i> , 2004 , 377, 312-315	5.7	11
76	Nanoindentation studies of UO2 and (U,Ce)O2. Journal of Alloys and Compounds, 2004, 381, 240-244	5.7	25
75	Thermophysical properties of NiZrSn1\(\mathbb{R}\)Sbx half-Heusler compounds. <i>Journal of Alloys and Compounds</i> , 2004 , 381, 9-11	5.7	18
74	Thermal and mechanical properties of SrHfO3. <i>Journal of Alloys and Compounds</i> , 2004 , 381, 295-300	5.7	49
73	Thermoelectric properties of titanium-based half-Heusler compounds. <i>Journal of Alloys and Compounds</i> , 2004 , 384, 51-56	5.7	22
72	High temperature thermoelectric properties of CoNb1\(\mathbb{M}\xS\)n half-Heusler compounds. <i>Journal of Alloys and Compounds</i> , 2004 , 384, 303-307	5.7	11
71	Electrical properties of EBaCu2S2. Journal of Alloys and Compounds, 2004, 385, 312-315	5.7	13
70	Substitution effect on the thermoelectric properties of alkaline earth titanate. <i>Materials Letters</i> , 2004 , 58, 3868-3871	3.3	24
69	Nanoindentation of zirconium oxide films prepared near the <code>\Begin{align*} \text{Itransformation temperature}. \text{Journal of Alloys and Compounds}, 2004, 363, 258-261</code>	5.7	1
68	High temperature thermoelectric properties of NiZrSn half-Heusler compounds. <i>Journal of Alloys and Compounds</i> , 2004 , 364, 59-63	5.7	33
67	High temperature thermoelectric properties of CoTiSb half-Heusler compounds. <i>Journal of Alloys and Compounds</i> , 2004 , 384, 308-311	5.7	43
66	Thermophysical Properties of BaZrO3 and BaCeO3 <i>ChemInform</i> , 2003 , 34, no		2
65	Thermodynamic modelling and phase stability assessment of MO2X oxides with a fluorite structure. <i>Journal of Chemical Thermodynamics</i> , 2003 , 35, 719-731	2.9	20
64	Thermophysical properties of layered rare earth copper oxides. <i>Journal of Alloys and Compounds</i> , 2003 , 349, 269-272	5.7	8
63	Thermoelectric properties of layered rare earth copper oxides. <i>Journal of Alloys and Compounds</i> , 2003 , 349, 321-324	5.7	32

(2002-2003)

62	High temperature thermoelectric properties of (Fe1NVx)3Al Heusler type compounds. <i>Journal of Alloys and Compounds</i> , 2003 , 349, 37-40	5.7	19
61	Physical properties of Mo6⊠RuxTe8 and Mo6Te8⊠Sx. <i>Journal of Alloys and Compounds</i> , 2003 , 350, 288-2	9 ∮.7	10
60	Thermoelectric properties of rare earth doped SrTiO3. Journal of Alloys and Compounds, 2003, 350, 292	- 3 9/5	225
59	Thermoelectric properties of Ni- and Zn-doped Nd2CuO4. <i>Journal of Alloys and Compounds</i> , 2003 , 350, 340-343	5.7	13
58	Thermoelectric properties of Chevrel phase Mo6Te8\square\subsections. <i>Journal of Alloys and Compounds</i> , 2003 , 351, 208-211	5.7	18
57	Thermophysical properties of Tl9BiTe6 and TlBiTe2. Journal of Alloys and Compounds, 2003, 351, 14-17	5.7	21
56	Thermoelectric properties of TlBiTe2. Journal of Alloys and Compounds, 2003, 351, 279-282	5.7	46
55	High temperature phase transitions of SrZrO3. Journal of Alloys and Compounds, 2003, 351, 43-46	5.7	61
54	Thermoelectric properties of Tl9BiTe6. Journal of Alloys and Compounds, 2003, 352, 275-278	5.7	65
53	Thermophysical properties of Fe2VAl. Journal of Alloys and Compounds, 2003, 352, 48-51	5.7	21
52	Thermal properties of SrCeO3. Journal of Alloys and Compounds, 2003, 352, 52-56	5.7	19
51	Thermophysical properties of MoRuRhPd alloys. <i>Journal of Alloys and Compounds</i> , 2003 , 353, 269-273	5.7	21
50	Thermoelectric properties of Fe VB i Heusler type compounds. <i>Journal of Alloys and Compounds</i> , 2003 , 359, 216-220	5.7	8
49	Heat capacities and thermal conductivities of perovskite type BaZrO3 and BaCeO3. <i>Journal of Alloys and Compounds</i> , 2003 , 359, 1-4	5.7	66
48	Thermophysical properties of BaZrO3 and BaCeO3. Journal of Alloys and Compounds, 2003, 359, 109-11	3 5.7	157
47	Thermoelectric properties of constantan/spherical SiO2 and Al2O3 particles composite. <i>Journal of Alloys and Compounds</i> , 2003 , 359, 326-329	5.7	28
46	Hydrogen solubility in uranium intermetallic compounds with Fe2P type structure. <i>Journal of Nuclear Science and Technology</i> , 2002 , 39, 642-644	1	
45	Thermal conductivity modeling of high burnup MOX fuel. <i>Journal of Nuclear Science and Technology</i> , 2002 , 39, 862-865	1	

44	Physico-chemical Properties of Fe2P-type Uranium Intermetallic Compounds. <i>Journal of Nuclear Science and Technology</i> , 2002 , 39, 645-648	1	1
43	Phase equilibria in the BaUO3-BaZrO3-BaMoO3 system. <i>Journal of Nuclear Science and Technology</i> , 2002 , 39, 807-810	1	6
42	Thermal conductivities of uranium intermetallic compounds. <i>Journal of Nuclear Science and Technology</i> , 2002 , 39, 811-814	1	1
41	Electronic states of BaUO3. Journal of Nuclear Science and Technology, 2002, 39, 784-786	1	1
40	Heat capacities of BaMO3. Journal of Nuclear Science and Technology, 2002, 39, 823-826	1	8
39	A molecular dynamics study on BaUO3. <i>Journal of Nuclear Science and Technology</i> , 2002 , 39, 815-818	1	7
38	Photoelectrochemical study of hydrogen in zirconium oxide. <i>Journal of Alloys and Compounds</i> , 2002 , 330-332, 645-648	5.7	10
37	Electronic states of hydrogen in zirconium oxide. <i>Journal of Alloys and Compounds</i> , 2002 , 330-332, 307-	3527	10
36	Characteristics of zirconium hydride and deuteride. <i>Journal of Alloys and Compounds</i> , 2002 , 330-332, 99-104	5.7	61
35	Analysis of the electronic structure of zirconium hydride. <i>Journal of Alloys and Compounds</i> , 2002 , 330-332, 313-317	5.7	16
34	Thermoelectric properties of Mo3Te4. Journal of Alloys and Compounds, 2002, 334, 317-323	5.7	22
33	Thermoelectric properties of Ti- and Sn-doped ∃-Fe2O3. <i>Journal of Alloys and Compounds</i> , 2002 , 335, 200-202	5.7	28
32	Re-evaluation of the phase relationship between plutonium and zirconium dioxides. <i>Progress in Nuclear Energy</i> , 2001 , 38, 237-240	2.3	5
31	Thermal properties of Mo3Te4. <i>Journal of Nuclear Materials</i> , 2001 , 294, 179-182	3.3	6
30	Molecular dynamics study of mixed oxide fuel. <i>Journal of Nuclear Materials</i> , 2001 , 294, 160-167	3.3	62
29	Thermal properties of zirconium hydride. <i>Journal of Nuclear Materials</i> , 2001 , 294, 94-98	3.3	52
28	Thermal conductivity of (U,Ce)O2 with and without Nd or Zr. <i>Journal of Nuclear Materials</i> , 2001 , 294, 193-197	3.3	6
27	Some properties of a lead vanado-iodoapatite Pb10(VO4)6I2. <i>Journal of Nuclear Materials</i> , 2001 , 294, 119-122	3.3	36

26	Thermophysical properties of BaUO3. <i>Journal of Nuclear Materials</i> , 2001 , 294, 99-103	3.3	32
25	Thermoelectric properties of CoSb3. <i>Journal of Alloys and Compounds</i> , 2001 , 315, 193-197	5.7	185
24	Thermoelectric properties of NaCo2O4. <i>Journal of Alloys and Compounds</i> , 2001 , 315, 234-236	5.7	54
23	A molecular dynamics study on uraniumplutonium mixed nitride. <i>Journal of Alloys and Compounds</i> , 2001 , 319, 253-257	5.7	11
22	Thermoelectric properties of BaUO3. <i>Journal of Alloys and Compounds</i> , 2001 , 319, 271-275	5.7	43
21	Heat capacity measurement of BaUO3. <i>Journal of Alloys and Compounds</i> , 2001 , 322, 77-81	5.7	19
20	Mechanical properties of (U,Ce)O2 with and without Nd or Zr. <i>Journal of Alloys and Compounds</i> , 2001 , 327, 281-284	5.7	11
19	Evaluation of thermal properties of mixed oxide fuel by molecular dynamics. <i>Journal of Alloys and Compounds</i> , 2000 , 307, 1-9	5.7	48
18	Evaluation of thermal properties of uranium dioxide by molecular dynamics. <i>Journal of Alloys and Compounds</i> , 2000 , 307, 10-16	5.7	81
17	A molecular dynamics study of the thermal conductivity of uranium mononitride. <i>Journal of Alloys and Compounds</i> , 2000 , 311, 305-310	5.7	23
16	A molecular dynamics study on plutonium mononitride. <i>Journal of Alloys and Compounds</i> , 2000 , 313, 243	2 52/4 7	14
15	A molecular dynamics study of the heat capacity of uranium mononitride. <i>Journal of Alloys and Compounds</i> , 2000 , 297, 1-4	5.7	24
14	Measurements of Thermal Rate Constants for the Reactions of N(2D,2P) with C2H4 and C2D4 between 225 and 292 K. <i>Journal of Physical Chemistry A</i> , 1999 , 103, 8650-8656	2.8	23
13	Oxidative dehydrogenation of iso-butane to iso-butene I. Metal phosphate catalysts. <i>Applied Catalysis A: General</i> , 1998 , 167, 49-56	5.1	44
12	Phase equilibria in the ternary URu3DRh3DPd3 system. <i>Journal of Alloys and Compounds</i> , 1998 , 271-273, 641-644	5.7	5
11	Formation of the Cu3Au type solid solution of UPd3 by doping a small amount of URu3. <i>Journal of Alloys and Compounds</i> , 1998 , 274, 222-228	5.7	O
10	Reactions of uranium nitride with platinum-family metals. <i>Journal of Nuclear Materials</i> , 1997 , 247, 322-3	3 2 73	5
9	Molecular Dynamics Studies of Minor Actinide Dioxides		8

8	Molecular Dynamics Studies of Americium-Containing Mixed Oxide Fuels		1
7	Molecular Dynamics Study on Defect Structure of Gadolinia-Doped Thoria		1
6	Thermal Conductivity of Hafnium Hydride		3
5	Thermomechanical Properties of Hafnium Hydride		3
4	Large Anharmonicity and Low Lattice Thermal Conductivity of Thermoelectric Sn(SbTe2)2. <i>Physica Status Solidi - Rapid Research Letters</i> ,2100482	2.5	О
3	FEM Study of Delayed Hydride Cracking in Zirconium Alloy Fuel Cladding. <i>Ceramic Transactions</i> ,59-69	0.1	
2	AB Initio Study of the Influence of Pressure on the Hydrogen Diffusion Behavior in Zirconium Hydrogen Solid Solution. <i>Ceramic Transactions</i> ,41-49	0.1	
1	Thermophysical Properties of Sintered SrY2O4 and the Related Compounds Applicable to Thermal Barrier Coating Materials. <i>Ceramic Transactions</i> 77-83	0.1	