Esam I Jassim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3839036/publications.pdf

Version: 2024-02-01

		1684188	1372567	
13	172	5	10	
papers	citations	h-index	g-index	
14	14	14	144	
all docs	docs citations	times ranked	citing authors	

#	Article	IF	CITATIONS
1	Exergy analysis of petrol engine accommodated nanoparticle in the lubricant system. International Journal of Exergy, 2021, 35, 406.	0.4	2
2	Effect of Flow Rate and Concentration of Water / TiO2 Nanofluid on the Performance of Heat Exchanger. IOP Conference Series: Earth and Environmental Science, 2021, 811, 012019.	0.3	2
3	Assessment of nanofluid on the performance and energy-environment interaction of Plate-Type-Heat exchanger. Thermal Science and Engineering Progress, 2021, 25, 100988.	2.7	12
4	Performance and environment interactivity of concentric heat exchanger practicing TiO2 nanofluid and operated near heat capacity ratio of unity. Case Studies in Thermal Engineering, 2021, 28, 101702.	5.7	4
5	Particle Entrainment and Deposition Scenario in Sublayer Region of Variable Area Conduit. E3S Web of Conferences, 2020, 162, 03006.	0.5	O
6	Experimental assessment of Al2O3 and Cu nanofluids on the performance and heat leak of double pipe heat exchanger. Heat and Mass Transfer, 2020, 56, 1845-1858.	2.1	18
7	Effect of Mixing Nano-Additive With Engine Oil on The Heat Transfer Performance. , 2020, , .		2
8	Geometrical Impaction of Supersonic Nozzle on the Dehumidification Performance During Gas Purification Process: an Experimental Study. Arabian Journal for Science and Engineering, 2019, 44, 1057-1067.	3.0	5
9	Environmental Impact of Mixing Biofuel with Gasoline in Spark Ignition Engine. IOP Conference Series: Earth and Environmental Science, 2019, 401, 012013.	0.3	1
10	CFD study on particle separation performance by shock inception during natural gas flow in supersonic nozzle. Progress in Computational Fluid Dynamics, 2016, 16, 300.	0.2	1
11	CFD Modeling of Toxic Element Evolved During Coal Combustion. Arabian Journal for Science and Engineering, 2015, 40, 3665-3674.	1.1	4
12	The influence of fragmentation on the behavior of pyrite particles during pulverized coal combustion. Fuel Processing Technology, 2011, 92, 970-976.	7.2	17
13	A new approach to investigate hydrate deposition in gas-dominated flowlines. Journal of Natural Gas Science and Engineering, 2010, 2, 163-177.	4.4	104