David M Wall

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/383895/publications.pdf

Version: 2024-02-01

279798 454955 1,373 31 23 30 citations h-index g-index papers 31 31 31 1478 citing authors docs citations times ranked all docs

#	Article	IF	Citations
1	Feedstock pretreatment for enhanced anaerobic digestion of lignocellulosic residues for bioenergy production., 2022,, 253-282.		2
2	A comparison of digestate management options at a large anaerobic digestion plant. Journal of Environmental Management, 2022, 317, 115312.	7.8	3
3	The effect of seasonal biomass availability and energy demand on the operation of an on-farm biomethane plant. Journal of Cleaner Production, 2022, 368, 133129.	9.3	6
4	Distillery decarbonisation and anaerobic digestion: balancing benefits and drawbacks using a compromise programming approach. Biofuel Research Journal, 2021, 8, 1417-1432.	13.3	10
5	Emerging bioelectrochemical technologies for biogas production and upgrading in cascading circular bioenergy systems. IScience, 2021, 24, 102998.	4.1	16
6	Alternative energy management strategies for large industry in non-gas-grid regions using on-farm biomethane. Applied Energy, 2021, 303, 117627.	10.1	6
7	What physicochemical properties of biochar facilitate interspecies electron transfer in anaerobic digestion: A case study of digestion of whiskey by-products. Fuel, 2021, 306, 121736.	6.4	39
8	Can thermal energy recovery from digestate make renewable gas from household waste more cost effective? A case study for the Republic of Ireland. Journal of Cleaner Production, 2020, 261, 121198.	9.3	7
9	Using biogas to reduce natural gas consumption and greenhouse gas emissions at a large distillery. Applied Energy, 2020, 279, 115812.	10.1	42
10	The effect of electricity markets, and renewable electricity penetration, on the levelised cost of energy of an advanced electro-fuel system incorporating carbon capture and utilisation. Renewable Energy, 2019, 131, 364-371.	8.9	35
11	Trace element supplementation is associated with increases in fermenting bacteria in biogas mono-digestion of grass silage. Renewable Energy, 2019, 138, 980-986.	8.9	56
12	Biological hydrogen methanation systems – an overview of design and efficiency. Bioengineered, 2019, 10, 604-634.	3.2	74
13	Modelling of a power-to-gas system to predict the levelised cost of energy of an advanced renewable gaseous transport fuel. Applied Energy, 2018, 215, 444-456.	10.1	85
14	Techno-economic analysis of biogas upgrading via amine scrubber, carbon capture and ex-situ methanation. Applied Energy, 2018, 212, 1191-1202.	10.1	140
15	An economic and carbon analysis of biomethane production from food waste to be used as a transport fuel in Mexico. Journal of Cleaner Production, 2018, 196, 852-862.	9.3	44
16	Use of surplus wind electricity in Ireland to produce compressed renewable gaseous transport fuel through biological power to gas systems. Renewable Energy, 2017, 105, 495-504.	8.9	56
17	Assessing the total theoretical, and financially viable, resource of biomethane for injection to a natural gas network in a region. Applied Energy, 2017, 188, 237-256.	10.1	54
18	Sustainability assessment of large-scale storage technologies for surplus electricity using group multi-criteria decision analysis. Clean Technologies and Environmental Policy, 2017, 19, 689-703.	4.1	34

#	Article	IF	CITATIONS
19	Cascading biomethane energy systems for sustainable green gas production in a circular economy. Bioresource Technology, 2017, 243, 1207-1215.	9.6	64
20	Optimised biogas production from microalgae through co-digestion with carbon-rich co-substrates. Bioresource Technology, 2016, 214, 328-337.	9.6	83
21	Quantification and location of a renewable gas industry based on digestion of wastes in Ireland. Applied Energy, 2016, 175, 229-239.	10.1	24
22	Biogas production generated through continuous digestion of natural and cultivated seaweeds with dairy slurry. Bioresource Technology, 2016, 219, 228-238.	9.6	32
23	Assessment of the impact of incentives and of scale on the build order and location of biomethane facilities and the feedstock they utilise. Applied Energy, 2016, 182, 394-408.	10.1	30
24	A detailed assessment of resource of biomethane from first, second and third generation substrates. Renewable Energy, 2016, 87, 656-665.	8.9	55
25	What is the gross energy yield of third generation gaseous biofuel sourced from seaweed?. Energy, 2015, 81, 352-360.	8.8	100
26	Methanosarcina Play an Important Role in Anaerobic Co-Digestion of the Seaweed Ulva lactuca: Taxonomy and Predicted Metabolism of Functional Microbial Communities. PLoS ONE, 2015, 10, e0142603.	2.5	33
27	Investigation of the optimal percentage of green seaweed that may be co-digested with dairy slurry to produce gaseous biofuel. Bioresource Technology, 2014, 170, 436-444.	9.6	52
28	Optimisation of digester performance with increasing organic loading rate for mono- and co-digestion of grass silage and dairy slurry. Bioresource Technology, 2014, 173, 422-428.	9.6	51
29	The effect of trace element addition to mono-digestion of grass silage at high organic loading rates. Bioresource Technology, 2014, 172, 349-355.	9.6	51
30	The potential for biomethane from grass and slurry to satisfy renewable energy targets. Bioresource Technology, 2013, 149, 425-431.	9.6	87
31	Reconstitution of dewatered food processing residuals with manure to increase energy production from anaerobic digestion. Biomass and Bioenergy, 2012, 46, 429-434.	5.7	2