David M Wall

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/383895/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Techno-economic analysis of biogas upgrading via amine scrubber, carbon capture and ex-situ methanation. Applied Energy, 2018, 212, 1191-1202.	5.1	140
2	What is the gross energy yield of third generation gaseous biofuel sourced from seaweed?. Energy, 2015, 81, 352-360.	4.5	100
3	The potential for biomethane from grass and slurry to satisfy renewable energy targets. Bioresource Technology, 2013, 149, 425-431.	4.8	87
4	Modelling of a power-to-gas system to predict the levelised cost of energy of an advanced renewable gaseous transport fuel. Applied Energy, 2018, 215, 444-456.	5.1	85
5	Optimised biogas production from microalgae through co-digestion with carbon-rich co-substrates. Bioresource Technology, 2016, 214, 328-337.	4.8	83
6	Biological hydrogen methanation systems – an overview of design and efficiency. Bioengineered, 2019, 10, 604-634.	1.4	74
7	Cascading biomethane energy systems for sustainable green gas production in a circular economy. Bioresource Technology, 2017, 243, 1207-1215.	4.8	64
8	Use of surplus wind electricity in Ireland to produce compressed renewable gaseous transport fuel through biological power to gas systems. Renewable Energy, 2017, 105, 495-504.	4.3	56
9	Trace element supplementation is associated with increases in fermenting bacteria in biogas mono-digestion of grass silage. Renewable Energy, 2019, 138, 980-986.	4.3	56
10	A detailed assessment of resource of biomethane from first, second and third generation substrates. Renewable Energy, 2016, 87, 656-665.	4.3	55
11	Assessing the total theoretical, and financially viable, resource of biomethane for injection to a natural gas network in a region. Applied Energy, 2017, 188, 237-256.	5.1	54
12	Investigation of the optimal percentage of green seaweed that may be co-digested with dairy slurry to produce gaseous biofuel. Bioresource Technology, 2014, 170, 436-444.	4.8	52
13	Optimisation of digester performance with increasing organic loading rate for mono- and co-digestion of grass silage and dairy slurry. Bioresource Technology, 2014, 173, 422-428.	4.8	51
14	The effect of trace element addition to mono-digestion of grass silage at high organic loading rates. Bioresource Technology, 2014, 172, 349-355.	4.8	51
15	An economic and carbon analysis of biomethane production from food waste to be used as a transport fuel in Mexico. Journal of Cleaner Production, 2018, 196, 852-862.	4.6	44
16	Using biogas to reduce natural gas consumption and greenhouse gas emissions at a large distillery. Applied Energy, 2020, 279, 115812.	5.1	42
17	What physicochemical properties of biochar facilitate interspecies electron transfer in anaerobic digestion: A case study of digestion of whiskey by-products. Fuel, 2021, 306, 121736.	3.4	39
18	The effect of electricity markets, and renewable electricity penetration, on the levelised cost of energy of an advanced electro-fuel system incorporating carbon capture and utilisation. Renewable Energy, 2019, 131, 364-371.	4.3	35

DAVID M WALL

#	Article	IF	CITATIONS
19	Sustainability assessment of large-scale storage technologies for surplus electricity using group multi-criteria decision analysis. Clean Technologies and Environmental Policy, 2017, 19, 689-703.	2.1	34
20	Methanosarcina Play an Important Role in Anaerobic Co-Digestion of the Seaweed Ulva lactuca: Taxonomy and Predicted Metabolism of Functional Microbial Communities. PLoS ONE, 2015, 10, e0142603.	1.1	33
21	Biogas production generated through continuous digestion of natural and cultivated seaweeds with dairy slurry. Bioresource Technology, 2016, 219, 228-238.	4.8	32
22	Assessment of the impact of incentives and of scale on the build order and location of biomethane facilities and the feedstock they utilise. Applied Energy, 2016, 182, 394-408.	5.1	30
23	Quantification and location of a renewable gas industry based on digestion of wastes in Ireland. Applied Energy, 2016, 175, 229-239.	5.1	24
24	Emerging bioelectrochemical technologies for biogas production and upgrading in cascading circular bioenergy systems. IScience, 2021, 24, 102998.	1.9	16
25	Distillery decarbonisation and anaerobic digestion: balancing benefits and drawbacks using a compromise programming approach. Biofuel Research Journal, 2021, 8, 1417-1432.	7.2	10
26	Can thermal energy recovery from digestate make renewable gas from household waste more cost effective? A case study for the Republic of Ireland. Journal of Cleaner Production, 2020, 261, 121198.	4.6	7
27	Alternative energy management strategies for large industry in non-gas-grid regions using on-farm biomethane. Applied Energy, 2021, 303, 117627.	5.1	6
28	The effect of seasonal biomass availability and energy demand on the operation of an on-farm biomethane plant. Journal of Cleaner Production, 2022, 368, 133129.	4.6	6
29	A comparison of digestate management options at a large anaerobic digestion plant. Journal of Environmental Management, 2022, 317, 115312.	3.8	3
30	Reconstitution of dewatered food processing residuals with manure to increase energy production from anaerobic digestion. Biomass and Bioenergy, 2012, 46, 429-434.	2.9	2
31	Feedstock pretreatment for enhanced anaerobic digestion of lignocellulosic residues for bioenergy production. , 2022, , 253-282.		2