Julio Páez-Valencia

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3838758/publications.pdf

Version: 2024-02-01

27 papers 1,469 citations

430754 18 h-index 25 g-index

29 all docs 29 docs citations

times ranked

29

2050 citing authors

#	Article	IF	CITATIONS
1	Microautophagy Mediates Vacuolar Delivery of Storage Proteins in Maize Aleurone Cells. Frontiers in Plant Science, 2022, 13, 833612.	1.7	11
2	Class III Peroxidases PRX01, PRX44, and PRX73 Control Root Hair Growth in Arabidopsis thaliana. International Journal of Molecular Sciences, 2022, 23, 5375.	1.8	15
3	ESCRT components ISTL1 andLIP5 are required for tapetal function and pollen viability. Plant Cell, 2021, 33, 2850-2868.	3.1	19
4	Tonoplast-localized Ca ²⁺ pumps regulate Ca ²⁺ signals during pattern-triggered immunity in <i>Arabidopsis thaliana</i> Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 18849-18857.	3.3	62
5	Reticulon proteins modulate autophagy of the endoplasmic reticulum in maize endosperm. ELife, 2020, 9, .	2.8	53
6	Cell-Free Protein Translation System for Expression of Lipid-Binding Proteins Tagged with Small epitopes and Their Use in Protein–Lipid Overlay Assays. Methods in Molecular Biology, 2020, 2177, 143-152.	0.4	0
7	Purification of Plant ESCRT Proteins for Polyclonal Antibody Production. Methods in Molecular Biology, 2019, 1998, 227-238.	0.4	O
8	The Diverse Iron Distribution in Eudicotyledoneae Seeds: From Arabidopsis to Quinoa. Frontiers in Plant Science, 2018, 9, 1985.	1.7	12
9	ESCRT-mediated vesicle concatenation in plant endosomes. Journal of Cell Biology, 2017, 216, 2167-2177.	2.3	51
10	Endocytosis and Endosomal Trafficking in Plants. Annual Review of Plant Biology, 2016, 67, 309-335.	8.6	259
11	Constitutive and Companion Cell-Specific Overexpression of $\langle i \rangle$ AVP1 $\langle i \rangle$, Encoding a Proton-Pumping Pyrophosphatase, Enhances Biomass Accumulation, Phloem Loading, and Long-Distance Transport. Plant Physiology, 2016, 170, 401-414.	2.3	66
12	Role of SKD1 Regulators LIP5 and IST1-LIKE1 in Endosomal Sorting and Plant Development. Plant Physiology, 2016, 171, 251-264.	2.3	61
13	Plant H+-PPases: Reversible Enzymes with Contrasting Functions Dependent on Membrane Environment. Molecular Plant, 2016, 9, 317-319.	3.9	31
14	Arabidopsis Type I Proton-Pumping Pyrophosphatase Expresses Strongly in Phloem, Where It Is Required for Pyrophosphate Metabolism and Photosynthate Partitioning. Plant Physiology, 2015, 167, 1541-1553.	2.3	73
15	The VASCULATURE COMPLEXITY AND CONNECTIVITY Gene Encodes a Plant-Specific Protein Required for Embryo Provasculature Development. Plant Physiology, 2014, 166, 889-902.	2.3	28
16	Enhanced Proton Translocating Pyrophosphatase Activity Improves Nitrogen Use Efficiency in Romaine Lettuce Â. Plant Physiology, 2013, 161, 1557-1569.	2.3	63
17	Genetic Manipulation of a "Vacuolar―H+-PPase: From Salt Tolerance to Yield Enhancement under Phosphorus-Deficient Soils. Plant Physiology, 2012, 159, 3-11.	2.3	98
18	Arabidopsis sodium dependent and independent phenotypes triggered by H+-PPase up-regulation are SOS1 dependent. Plant Science, 2012, 183, 96-105.	1.7	31

#	Article	IF	CITATIONS
19	Plasma membrane localization of the type I H+-PPase AVP1 in sieve element–companion cell complexes from Arabidopsis thaliana. Plant Science, 2011, 181, 23-30.	1.7	53
20	Expression of an Arabidopsis vacuolar H ⁺ â€pyrophosphatase gene (<i>AVP1</i>) in cotton improves droughtâ€and salt tolerance and increases fibre yield in the field conditions. Plant Biotechnology Journal, 2011, 9, 88-99.	4.1	253
21	Developmental Pattern of the Right Atrioventricular Septal Valve Leaflet and Tendinous Cords. Anatomical Record, 2010, 293, 55-61.	0.8	3
22	SnRK1 Isoforms AKIN10 and AKIN11 Are Differentially Regulated in Arabidopsis Plants under Phosphate Starvation. Plant Physiology, 2009, 149, 1906-1916.	2.3	117
23	Localization of the MADS domain transcriptional factor NMH7 during seed, seedling and nodule development of Medicago sativa. Plant Science, 2008, 175, 596-603.	1.7	9
24	Identification of Fructose-1,6-bisphosphate aldolase cytosolic class I as an NMH7 MADS domain associated protein. Biochemical and Biophysical Research Communications, 2008, 376, 700-705.	1.0	18
25	Improving seed germination and seedling growth of Omphalea oleifera (Euphorbiaceae) for restoration projects in tropical rain forests. Forest Ecology and Management, 2007, 243, 144-155.	1.4	28
26	FLOR1, a putative interaction partner of the floral homeotic protein AGAMOUS, is a plant-specific intracellular LRR. Plant Science, 2004, 167, 225-231.	1.7	17
27	Floral Transcription Factor AGAMOUS Interacts in Vitro with a Leucine-Rich Repeat and an Acid Phosphatase Protein Complex. Biochemical and Biophysical Research Communications, 2001, 288, 1018-1026.	1.0	30