Xiaoqiu Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3838311/publications.pdf Version: 2024-02-01

XIAOOUL CHEN

#	Article	IF	CITATIONS
1	Strong impacts of daily minimum temperature on the greenâ€up date and summer greenness of the Tibetan Plateau. Global Change Biology, 2016, 22, 3057-3066.	4.2	223
2	Spatial and temporal variation of phenological growing season and climate change impacts in temperate eastern China. Global Change Biology, 2005, 11, 1118-1130.	4.2	199
3	Temperature and snowfall trigger alpine vegetation greenâ€up on the world's roof. Global Change Biology, 2015, 21, 3635-3646.	4.2	168
4	A new process-based model for predicting autumn phenology: How is leaf senescence controlled by photoperiod and temperature coupling?. Agricultural and Forest Meteorology, 2019, 268, 124-135.	1.9	80
5	Phenological responses of Ulmus pumila (Siberian Elm) to climate change in the temperate zone of China. International Journal of Biometeorology, 2012, 56, 695-706.	1.3	79
6	Assessing plant senescence reflectance index-retrieved vegetation phenology and its spatiotemporal response to climate change in the Inner Mongolian Grassland. International Journal of Biometeorology, 2017, 61, 601-612.	1.3	66
7	Relationships among phenological growing season, time-integrated normalized difference vegetation index and climate forcing in the temperate region of eastern China. International Journal of Climatology, 2002, 22, 1781-1792.	1.5	61
8	Modeling greenup date of dominant grass species in the Inner Mongolian Grassland using air temperature and precipitation data. International Journal of Biometeorology, 2014, 58, 463-471.	1.3	61
9	Delayed response of spring phenology to global warming in subtropics and tropics. Agricultural and Forest Meteorology, 2017, 234-235, 222-235.	1.9	53
10	Little change in heat requirement for vegetation green-up on the Tibetan Plateau over the warming period of 1998–2012. Agricultural and Forest Meteorology, 2017, 232, 650-658.	1.9	47
11	Antagonistic effects of growing season and autumn temperatures on the timing of leaf coloration in winter deciduous trees. Global Change Biology, 2018, 24, 3537-3545.	4.2	42
12	Precipitation and Minimum Temperature are Primary Climatic Controls of Alpine Grassland Autumn Phenology on the Qinghai-Tibet Plateau. Remote Sensing, 2020, 12, 431.	1.8	41
13	Temperature controls on the spatial pattern of tree phenology in China's temperate zone. Agricultural and Forest Meteorology, 2012, 154-155, 195-202.	1.9	37
14	Assessing Performance of NDVI and NDVI3g in Monitoring Leaf Unfolding Dates of the Deciduous Broadleaf Forest in Northern China. Remote Sensing, 2013, 5, 845-861.	1.8	32
15	Regional unified modelâ€based leaf unfolding prediction from 1960 to 2009 across northern China. Global Change Biology, 2013, 19, 1275-1284.	4.2	29
16	Modeling and predicting spring land surface phenology of the deciduous broadleaf forest in northern China. Agricultural and Forest Meteorology, 2014, 198-199, 33-41.	1.9	29
17	Climatic Controls of the Spatial Patterns of Vegetation Phenology in Midlatitude Grasslands of the Northern Hemisphere. Journal of Geophysical Research G: Biogeosciences, 2018, 123, 2323-2336.	1.3	27
18	An Exploration of Terrain Effects on Land Surface Phenology across the Qinghai–Tibet Plateau Using Landsat ETM+ and OLI Data. Remote Sensing, 2018, 10, 1069.	1.8	22

XIAOQIU CHEN

#	Article	IF	CITATIONS
19	Modelling leaf coloration dates over temperate China by considering effects of leafy season climate. Ecological Modelling, 2019, 394, 34-43.	1.2	20
20	Temperature and geographic attribution of change in the Taraxacum mongolicum growing season from 1990 to 2009 in eastern China's temperate zone. International Journal of Biometeorology, 2015, 59, 1437-1452.	1.3	16
21	Assessing the relative importance of sunshine, temperature, precipitation, and spring phenology in regulating leaf senescence timing of herbaceous species in China. Agricultural and Forest Meteorology, 2022, 313, 108770.	1.9	16
22	Analysing and simulating spatial patterns of crop yield in Guizhou Province based on artificial neural networks. Progress in Physical Geography, 2021, 45, 33-52.	1.4	14
23	Temperature-precipitation background affects spatial heterogeneity of spring phenology responses to climate change in northern grasslands (30°N-55°N). Agricultural and Forest Meteorology, 2022, 315, 108816.	1.9	13
24	Characterizing the Error and Bias of Remotely Sensed LAI Products: An Example for Tropical and Subtropical Evergreen Forests in South China. Remote Sensing, 2020, 12, 3122.	1.8	11
25	Comparison of spatial patterns of satellite-derived and ground-based phenology for the deciduous broadleaf forest of China. Remote Sensing Letters, 2013, 4, 532-541.	0.6	10
26	Geographic and Climatic Attributions of Autumn Land Surface Phenology Spatial Patterns in the Temperate Deciduous Broadleaf Forest of China. Remote Sensing, 2019, 11, 1546.	1.8	10
27	East Asia. , 2013, , 9-22.		10
28	Spatiotemporal Processes of Plant Phenology. Springer Briefs in Geography, 2017, , .	0.1	9
29	Arctic warming-induced cold damage to East Asian terrestrial ecosystems. Communications Earth & Environment, 2022, 3, .	2.6	8
30	Periodic Relations between Terrestrial Vegetation and Climate Factors across the Globe. Remote Sensing, 2020, 12, 1805.	1.8	7
31	Spatial modeling of the Ulmus pumila growing season in China's temperate zone. Science China Earth Sciences, 2012, 55, 656-664.	2.3	6
32	Temporal coherence of phenological and climatic rhythmicity in Beijing. International Journal of Biometeorology, 2017, 61, 1733-1748.	1.3	6
33	Increasing Interspecific Difference of Alpine Herb Phenology on the Eastern Qinghai-Tibet Plateau. Frontiers in Plant Science, 2022, 13, 844971.	1.7	5
34	Effects of temperature and precipitation on litterfall phenology in four evergreen broadâ€leaved forests of southern China. Biotropica, 2022, 54, 739-753.	0.8	4
35	Plant Phenology of Natural Landscape Dynamics. Springer Briefs in Geography, 2017, , 1-5.	0.1	3
36	Why don't phenophase dates in the current year affect the same phenophase dates in the following year?. International Journal of Biometeorology, 2020, 64, 1549-1560.	1.3	3

Xiaoqiu Chen

#	Article	IF	CITATIONS
37	Examining spring phenological responses to temperature variations during different periods in subtropical and tropical China. International Journal of Climatology, 2021, 41, E3208.	1.5	3
38	Temporal Rhythmicity of Plant Phenology. Springer Briefs in Geography, 2017, , 7-15.	0.1	1
39	Process-Based Simulation and Prediction of Plant Phenology Spatiotemporal Variations. Springer Briefs in Geography, 2017, , 45-66.	0.1	1
40	Spatiotemporal Coupling Effects of Plant Phenology. Springer Briefs in Geography, 2017, , 91-96.	0.1	1
41	Daily Temperature-Based Temporal and Spatial Modeling of Tree Phenology. , 2013, , 317-333.		1
42	Spatial Pattern of Plant Phenology. Springer Briefs in Geography, 2017, , 17-21.	0.1	0
43	Examining land surface phenology in the tropical moist forest eco-zone of South America. International Journal of Biometeorology, 2020, 64, 1911-1922.	1.3	0
44	Process-Based Spatiotemporal Simulation and Prediction of Remote Sensing Phenology. Springer Briefs in Geography, 2017, , 81-90.	0.1	0
45	Statistical Simulation of Plant Phenology Temporal Variation. Springer Briefs in Geography, 2017, , 23-33.	0.1	0
46	Statistical Simulation of Plant Phenology Spatial Variation. Springer Briefs in Geography, 2017, , 35-44.	0.1	0
47	Spatial and Temporal Validation of Remote Sensing Phenology. Springer Briefs in Geography, 2017, , 67-80.	0.1	0