
## Antonio Abate

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3838139/publications.pdf Version: 2024-02-01



ΔΝΤΟΝΙΟ ΔΒΑΤΕ

| #  | Article                                                                                                                                                                    | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency. Energy and Environmental Science, 2016, 9, 1989-1997.     | 30.8 | 4,560     |
| 2  | Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance.<br>Science, 2016, 354, 206-209.                                           | 12.6 | 3,137     |
| 3  | Anomalous Hysteresis in Perovskite Solar Cells. Journal of Physical Chemistry Letters, 2014, 5, 1511-1515.                                                                 | 4.6  | 2,190     |
| 4  | Lead-free organic–inorganic tin halide perovskites for photovoltaic applications. Energy and<br>Environmental Science, 2014, 7, 3061-3068.                                 | 30.8 | 2,086     |
| 5  | Efficient luminescent solar cells based on tailored mixed-cation perovskites. Science Advances, 2016, 2, e1501170.                                                         | 10.3 | 1,669     |
| 6  | Overcoming ultraviolet light instability of sensitized TiO2 with meso-superstructured organometal tri-halide perovskite solar cells. Nature Communications, 2013, 4, 2885. | 12.8 | 1,592     |
| 7  | Promises and challenges of perovskite solar cells. Science, 2017, 358, 739-744.                                                                                            | 12.6 | 1,510     |
| 8  | Enhanced Photoluminescence and Solar Cell Performance <i>via</i> Lewis Base Passivation of<br>Organic–Inorganic Lead Halide Perovskites. ACS Nano, 2014, 8, 9815-9821.     | 14.6 | 1,439     |
| 9  | Monolithic perovskite/silicon tandem solar cell with >29% efficiency by enhanced hole extraction.<br>Science, 2020, 370, 1300-1309.                                        | 12.6 | 1,120     |
| 10 | Highly efficient planar perovskite solar cells through band alignment engineering. Energy and<br>Environmental Science, 2015, 8, 2928-2934.                                | 30.8 | 1,097     |
| 11 | Low-Temperature Processed Electron Collection Layers of Graphene/TiO <sub>2</sub><br>Nanocomposites in Thin Film Perovskite Solar Cells. Nano Letters, 2014, 14, 724-730.  | 9.1  | 999       |
| 12 | Not All That Glitters Is Gold: Metal-Migration-Induced Degradation in Perovskite Solar Cells. ACS<br>Nano, 2016, 10, 6306-6314.                                            | 14.6 | 966       |
| 13 | The rapid evolution of highly efficient perovskite solar cells. Energy and Environmental Science, 2017, 10, 710-727.                                                       | 30.8 | 942       |
| 14 | A molecularly engineered hole-transporting material for efficient perovskite solar cells. Nature<br>Energy, 2016, 1, .                                                     | 39.5 | 816       |
| 15 | Consensus statement for stability assessment and reporting for perovskite photovoltaics based on<br>ISOS procedures. Nature Energy, 2020, 5, 35-49.                        | 39.5 | 797       |
| 16 | Ultrasmooth organic–inorganic perovskite thin-film formation and crystallization for efficient planar heterojunction solar cells. Nature Communications, 2015, 6, 6142.    | 12.8 | 784       |
| 17 | Enhanced electronic properties in mesoporous TiO2 via lithium doping for high-efficiency perovskite solar cells. Nature Communications, 2016, 7, 10379.                    | 12.8 | 744       |
| 18 | Highly efficient and stable planar perovskite solar cells by solution-processed tin oxide. Energy and<br>Environmental Science, 2016, 9, 3128-3134.                        | 30.8 | 720       |

| #  | Article                                                                                                                                                                                                                       | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Supramolecular Halogen Bond Passivation of Organic–Inorganic Halide Perovskite Solar Cells. Nano<br>Letters, 2014, 14, 3247-3254.                                                                                             | 9.1  | 651       |
| 20 | Heterojunction Modification for Highly Efficient Organic–Inorganic Perovskite Solar Cells. ACS<br>Nano, 2014, 8, 12701-12709.                                                                                                 | 14.6 | 614       |
| 21 | Sub-150 °C processed meso-superstructured perovskite solar cells with enhanced efficiency. Energy and Environmental Science, 2014, 7, 1142-1147.                                                                              | 30.8 | 560       |
| 22 | Lithium salts as "redox active―p-type dopants for organic semiconductors and their impact in solid-state dye-sensitized solar cells. Physical Chemistry Chemical Physics, 2013, 15, 2572.                                     | 2.8  | 557       |
| 23 | Monolithic perovskite/silicon-heterojunction tandem solar cells processed at low temperature.<br>Energy and Environmental Science, 2016, 9, 81-88.                                                                            | 30.8 | 536       |
| 24 | Migration of cations induces reversible performance losses over day/night cycling in perovskite solar cells. Energy and Environmental Science, 2017, 10, 604-613.                                                             | 30.8 | 525       |
| 25 | How to Make over 20% Efficient Perovskite Solar Cells in Regular ( <i>n–i–p</i> ) and Inverted<br>( <i>p–i–n</i> ) Architectures. Chemistry of Materials, 2018, 30, 4193-4201.                                                | 6.7  | 473       |
| 26 | Perovskite Solar Cells: From the Atomic Level to Film Quality and Device Performance. Angewandte<br>Chemie - International Edition, 2018, 57, 2554-2569.                                                                      | 13.8 | 413       |
| 27 | Perovskite Solar Cell Stability in Humid Air: Partially Reversible Phase Transitions in the<br>Pbl <sub>2</sub> â€CH <sub>3</sub> NH <sub>3</sub> lâ€H <sub>2</sub> O System. Advanced Energy Materials,<br>2016, 6, 1600846. | 19.5 | 355       |
| 28 | Improving the Long-Term Stability of Perovskite Solar Cells with a Porous<br>Al <sub>2</sub> O <sub>3</sub> Buffer Layer. Journal of Physical Chemistry Letters, 2015, 6, 432-437.                                            | 4.6  | 343       |
| 29 | Performance and Stability Enhancement of Dye‣ensitized and Perovskite Solar Cells by Al Doping of<br>TiO <sub>2</sub> . Advanced Functional Materials, 2014, 24, 6046-6055.                                                   | 14.9 | 330       |
| 30 | Triazatruxene-Based Hole Transporting Materials for Highly Efficient Perovskite Solar Cells. Journal of the American Chemical Society, 2015, 137, 16172-16178.                                                                | 13.7 | 321       |
| 31 | Biological impact of lead from halide perovskites reveals the risk of introducing a safe threshold.<br>Nature Communications, 2020, 11, 310.                                                                                  | 12.8 | 313       |
| 32 | Perovskite Solar Cells Go Lead Free. Joule, 2017, 1, 659-664.                                                                                                                                                                 | 24.0 | 305       |
| 33 | Efficient photosynthesis of carbon monoxide from CO2 using perovskite photovoltaics. Nature Communications, 2015, 6, 7326.                                                                                                    | 12.8 | 295       |
| 34 | Identifying and suppressing interfacial recombination to achieve high open-circuit voltage in perovskite solar cells. Energy and Environmental Science, 2017, 10, 1207-1212.                                                  | 30.8 | 288       |
| 35 | Enhancing Efficiency of Perovskite Solar Cells via Nâ€doped Graphene: Crystal Modification and Surface<br>Passivation. Advanced Materials, 2016, 28, 8681-8686.                                                               | 21.0 | 281       |
| 36 | Enhanced charge carrier mobility and lifetime suppress hysteresis and improve efficiency in planar perovskite solar cells. Energy and Environmental Science, 2018, 11, 78-86.                                                 | 30.8 | 246       |

| #  | Article                                                                                                                                                                                                    | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Unbroken Perovskite: Interplay of Morphology, Electroâ€optical Properties, and Ionic Movement.<br>Advanced Materials, 2016, 28, 5031-5037.                                                                 | 21.0 | 242       |
| 38 | The effect of illumination on the formation of metal halide perovskite films. Nature, 2017, 545, 208-212.                                                                                                  | 27.8 | 242       |
| 39 | A Methoxydiphenylamine‧ubstituted Carbazole Twin Derivative: An Efficient Holeâ€Transporting<br>Material for Perovskite Solar Cells. Angewandte Chemie - International Edition, 2015, 54, 11409-11413.     | 13.8 | 239       |
| 40 | Ionic Liquid Control Crystal Growth to Enhance Planar Perovskite Solar Cells Efficiency. Advanced<br>Energy Materials, 2016, 6, 1600767.                                                                   | 19.5 | 224       |
| 41 | Inverted Current–Voltage Hysteresis in Mixed Perovskite Solar Cells: Polarization, Energy Barriers,<br>and Defect Recombination. Advanced Energy Materials, 2016, 6, 1600396.                              | 19.5 | 213       |
| 42 | High Temperatureâ€Stable Perovskite Solar Cell Based on Lowâ€Cost Carbon Nanotube Hole Contact.<br>Advanced Materials, 2017, 29, 1606398.                                                                  | 21.0 | 209       |
| 43 | Mesoporous SnO2 electron selective contact enables UV-stable perovskite solar cells. Nano Energy, 2016, 30, 517-522.                                                                                       | 16.0 | 204       |
| 44 | Carbon nanotube-based hybrid hole-transporting material and selective contact for high efficiency perovskite solar cells. Energy and Environmental Science, 2016, 9, 461-466.                              | 30.8 | 185       |
| 45 | Passivation and process engineering approaches of halide perovskite films for high efficiency and stability perovskite solar cells. Energy and Environmental Science, 2021, 14, 2906-2953.                 | 30.8 | 170       |
| 46 | Protic Ionic Liquids as p-Dopant for Organic Hole Transporting Materials and Their Application in High<br>Efficiency Hybrid Solar Cells. Journal of the American Chemical Society, 2013, 135, 13538-13548. | 13.7 | 167       |
| 47 | High-Efficiency Polycrystalline Thin Film Tandem Solar Cells. Journal of Physical Chemistry Letters, 2015, 6, 2676-2681.                                                                                   | 4.6  | 166       |
| 48 | Silolothiophene-linked triphenylamines as stable hole transporting materials for high efficiency perovskite solar cells. Energy and Environmental Science, 2015, 8, 2946-2953.                             | 30.8 | 163       |
| 49 | Enhanced Efficiency and Stability of Perovskite Solar Cells Through Ndâ€Doping of Mesostructured<br>TiO <sub>2</sub> . Advanced Energy Materials, 2016, 6, 1501868.                                        | 19.5 | 157       |
| 50 | Enhancement in lifespan of halide perovskite solar cells. Energy and Environmental Science, 2019, 12,<br>865-886.                                                                                          | 30.8 | 143       |
| 51 | An open-access database and analysis tool for perovskite solar cells based on the FAIR data principles.<br>Nature Energy, 2022, 7, 107-115.                                                                | 39.5 | 136       |
| 52 | Molecular Tailoring of Phenothiazine-Based Hole-Transporting Materials for High-Performing<br>Perovskite Solar Cells. ACS Energy Letters, 2017, 2, 1029-1034.                                              | 17.4 | 134       |
| 53 | The Doping Mechanism of Halide Perovskite Unveiled by Alkaline Earth Metals. Journal of the American<br>Chemical Society, 2020, 142, 2364-2374.                                                            | 13.7 | 132       |
| 54 | A Ga-doped SnO <sub>2</sub> mesoporous contact for UV stable highly efficient perovskite solar<br>cells. Journal of Materials Chemistry A, 2018, 6, 1850-1857.                                             | 10.3 | 129       |

| #  | Article                                                                                                                                                                           | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Perovskite photovoltachromic cells for building integration. Energy and Environmental Science, 2015, 8, 1578-1584.                                                                | 30.8 | 125       |
| 56 | Tuning halide perovskite energy levels. Energy and Environmental Science, 2021, 14, 1429-1438.                                                                                    | 30.8 | 124       |
| 57 | Perovskite Grains Embraced in a Soft Fullerene Network Make Highly Efficient Flexible Solar Cells<br>with Superior Mechanical Stability. Advanced Materials, 2019, 31, e1901519.  | 21.0 | 123       |
| 58 | Spectral splitting photovoltaics using perovskite and wideband dye-sensitized solar cells. Nature Communications, 2015, 6, 8834.                                                  | 12.8 | 122       |
| 59 | 20.8% Slotâ€Die Coated MAPbI <sub>3</sub> Perovskite Solar Cells by Optimal DMSOâ€Content and Age of<br>2â€ME Based Precursor Inks. Advanced Energy Materials, 2021, 11, 2003460. | 19.5 | 122       |
| 60 | The Role of Charge Selective Contacts in Perovskite Solar Cell Stability. Advanced Energy Materials, 2019, 9, 1803140.                                                            | 19.5 | 120       |
| 61 | Progress, highlights and perspectives on NiO in perovskite photovoltaics. Chemical Science, 2020, 11, 7746-7759.                                                                  | 7.4  | 119       |
| 62 | Perovskite Solar Cells: From the Laboratory to the Assembly Line. Chemistry - A European Journal, 2018, 24, 3083-3100.                                                            | 3.3  | 118       |
| 63 | The Role of Grain Boundaries on Ionic Defect Migration in Metal Halide Perovskites. Advanced Energy<br>Materials, 2020, 10, 1903735.                                              | 19.5 | 117       |
| 64 | Ionic Liquid Stabilizing Highâ€Efficiency Tin Halide Perovskite Solar Cells. Advanced Energy Materials,<br>2021, 11, 2101539.                                                     | 19.5 | 117       |
| 65 | Tin Halide Perovskite Films Made of Highly Oriented 2D Crystals Enable More Efficient and Stable<br>Lead-free Perovskite Solar Cells. ACS Energy Letters, 2020, 5, 1923-1929.     | 17.4 | 116       |
| 66 | Measuring Aging Stability of Perovskite Solar Cells. Joule, 2018, 2, 1019-1024.                                                                                                   | 24.0 | 115       |
| 67 | Perfluorinated Self-Assembled Monolayers Enhance the Stability and Efficiency of Inverted Perovskite<br>Solar Cells. ACS Nano, 2020, 14, 1445-1456.                               | 14.6 | 115       |
| 68 | Tin Halide Perovskite (ASnX <sub>3</sub> ) Solar Cells: A Comprehensive Guide toward the Highest<br>Power Conversion Efficiency. Advanced Energy Materials, 2020, 10, 1902467.    | 19.5 | 114       |
| 69 | Highly Efficient and Stable Perovskite Solar Cells based on a Low ost Carbon Cloth. Advanced Energy<br>Materials, 2016, 6, 1601116.                                               | 19.5 | 107       |
| 70 | Flash Infrared Annealing for Antisolventâ€Free Highly Efficient Perovskite Solar Cells. Advanced Energy<br>Materials, 2018, 8, 1702915.                                           | 19.5 | 106       |
| 71 | Origin of Sn( <scp>ii</scp> ) oxidation in tin halide perovskites. Materials Advances, 2020, 1, 1066-1070.                                                                        | 5.4  | 106       |
| 72 | Diacetylene bridged triphenylamines as hole transport materials for solid state dye sensitized solar<br>cells. Journal of Materials Chemistry A, 2013, 1, 6949.                   | 10.3 | 105       |

| #  | Article                                                                                                                                                                                                                                    | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | Understanding the perovskite/self-assembled selective contact interface for ultra-stable and highly efficient p–i–n perovskite solar cells. Energy and Environmental Science, 2021, 14, 3976-3985.                                         | 30.8 | 104       |
| 74 | lon Migrationâ€Induced Amorphization and Phase Segregation as a Degradation Mechanism in Planar<br>Perovskite Solar Cells. Advanced Energy Materials, 2020, 10, 2000310.                                                                   | 19.5 | 103       |
| 75 | Coâ€Evaporated Formamidinium Lead Iodide Based Perovskites with 1000 h Constant Stability for Fully<br>Textured Monolithic Perovskite/Silicon Tandem Solar Cells. Advanced Energy Materials, 2021, 11,<br>2101460.                         | 19.5 | 102       |
| 76 | Optical analysis of CH <sub>3</sub> NH <sub>3</sub> Sn <sub>x</sub> Pb <sub>1â^'x</sub> I <sub>3</sub><br>absorbers: a roadmap for perovskite-on-perovskite tandem solar cells. Journal of Materials Chemistry<br>A, 2016, 4, 11214-11221. | 10.3 | 101       |
| 77 | Efficient and Stable Inorganic Perovskite Solar Cells Manufactured by Pulsed Flash Infrared<br>Annealing. Advanced Energy Materials, 2018, 8, 1802060.                                                                                     | 19.5 | 98        |
| 78 | Strong Photocurrent from Two-Dimensional Excitons in Solution-Processed Stacked Perovskite Semiconductor Sheets. ACS Applied Materials & amp; Interfaces, 2015, 7, 25227-25236.                                                            | 8.0  | 93        |
| 79 | Dimensional encapsulation of lâ^â<ī2â<īlâ^ in an organic salt crystal matrix. Chemical Communications, 2010, 46, 2724.                                                                                                                     | 4.1  | 89        |
| 80 | Graphene quantum dots decorated TiO2 mesoporous film as an efficient electron transport layer for high-performance perovskite solar cells. Journal of Power Sources, 2018, 402, 320-326.                                                   | 7.8  | 86        |
| 81 | Non-aggregated Zn( <scp>ii</scp> )octa(2,6-diphenylphenoxy) phthalocyanine as a hole transporting material for efficient perovskite solar cells. Dalton Transactions, 2015, 44, 10847-10851.                                               | 3.3  | 83        |
| 82 | Globularity‣elected Large Molecules for a New Generation of Multication Perovskites. Advanced<br>Materials, 2017, 29, 1702005.                                                                                                             | 21.0 | 81        |
| 83 | Ferroelectricity-free lead halide perovskites. Energy and Environmental Science, 2019, 12, 2537-2547.                                                                                                                                      | 30.8 | 80        |
| 84 | Stability of Organic Cations in Solution-Processed CH <sub>3</sub> NH <sub>3</sub> Pbl <sub>3</sub><br>Perovskites: Formation of Modified Surface Layers. Journal of Physical Chemistry C, 2015, 119,<br>21329-21335.                      | 3.1  | 79        |
| 85 | Enhanced Self-Assembled Monolayer Surface Coverage by ALD NiO in p-i-n Perovskite Solar Cells. ACS<br>Applied Materials & Interfaces, 2022, 14, 2166-2176.                                                                                 | 8.0  | 77        |
| 86 | Bi-functional interfaces by poly(ionic liquid) treatment in efficient pin and nip perovskite solar cells.<br>Energy and Environmental Science, 2021, 14, 4508-4522.                                                                        | 30.8 | 76        |
| 87 | Solvents for Processing Stable Tin Halide Perovskites. ACS Energy Letters, 2021, 6, 959-968.                                                                                                                                               | 17.4 | 76        |
| 88 | Rational Design of Molecular Hole-Transporting Materials for Perovskite Solar Cells: Direct versus<br>Inverted Device Configurations. ACS Applied Materials & Interfaces, 2017, 9, 24778-24787.                                            | 8.0  | 71        |
| 89 | Stability and Dark Hysteresis Correlate in NiOâ€Based Perovskite Solar Cells. Advanced Energy Materials,<br>2019, 9, 1901642.                                                                                                              | 19.5 | 69        |
| 90 | Compositional and Interfacial Engineering Yield High-Performance and Stable p-i-n Perovskite Solar<br>Cells and Mini-Modules. ACS Applied Materials & Interfaces, 2021, 13, 13022-13033.                                                   | 8.0  | 69        |

| #   | Article                                                                                                                                                                                                            | IF   | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 91  | Fluoride Chemistry in Tin Halide Perovskites. Angewandte Chemie - International Edition, 2021, 60, 21583-21591.                                                                                                    | 13.8 | 68        |
| 92  | Additiveâ€Free Transparent Triarylamineâ€Based Polymeric Holeâ€Transport Materials for Stable Perovskite<br>Solar Cells. ChemSusChem, 2016, 9, 2567-2571.                                                          | 6.8  | 65        |
| 93  | Anisotropic ionic conductivity in fluorinated ionic liquid crystals suitable for optoelectronic applications. Journal of Materials Chemistry A, 2013, 1, 6572.                                                     | 10.3 | 64        |
| 94  | Spontaneous crystal coalescence enables highly efficient perovskite solar cells. Nano Energy, 2017, 39, 24-29.                                                                                                     | 16.0 | 62        |
| 95  | Embedded Nickelâ€Mesh Transparent Electrodes for Highly Efficient and Mechanically Stable Flexible<br>Perovskite Photovoltaics: Toward a Portable Mobile Energy Source. Advanced Materials, 2020, 32,<br>e2003422. | 21.0 | 62        |
| 96  | Halide anions driven self-assembly of haloperfluoroarenes: Formation of one-dimensional non-covalent copolymers. Journal of Fluorine Chemistry, 2009, 130, 1171-1177.                                              | 1.7  | 60        |
| 97  | Influence of ionizing dopants on charge transport in organic semiconductors. Physical Chemistry<br>Chemical Physics, 2014, 16, 1132-1138.                                                                          | 2.8  | 58        |
| 98  | Structure-induced optoelectronic properties of phenothiazine-based materials. Journal of Materials<br>Chemistry C, 2020, 8, 15486-15506.                                                                           | 5.5  | 58        |
| 99  | Hole-transport materials with greatly-differing redox potentials give efficient TiO2–[CH3NH3][PbX3]<br>perovskite solar cells. Physical Chemistry Chemical Physics, 2015, 17, 2335-2338.                           | 2.8  | 57        |
| 100 | Rationalizing the Molecular Design of Hole‧elective Contacts to Improve Charge Extraction in<br>Perovskite Solar Cells. Advanced Energy Materials, 2019, 9, 1900990.                                               | 19.5 | 56        |
| 101 | Large-Grain Double Cation Perovskites with 18 μs Lifetime and High Luminescence Yield for Efficient<br>Inverted Perovskite Solar Cells. ACS Energy Letters, 2021, 6, 1045-1054.                                    | 17.4 | 54        |
| 102 | Ultrathin Nanosheets of Oxoâ€functionalized Graphene Inhibit the Ion Migration in Perovskite Solar<br>Cells. Advanced Energy Materials, 2020, 10, 1902653.                                                         | 19.5 | 52        |
| 103 | Towards Longâ€Term Photostability of Solidâ€State Dye Sensitized Solar Cells. Advanced Energy<br>Materials, 2014, 4, 1301667.                                                                                      | 19.5 | 51        |
| 104 | Topological distribution of reversible and non-reversible degradation in perovskite solar cells. Nano<br>Energy, 2018, 45, 94-100.                                                                                 | 16.0 | 46        |
| 105 | From Bulk to Surface: Sodium Treatment Reduces Recombination at the Nickel Oxide/Perovskite<br>Interface. Advanced Materials Interfaces, 2019, 6, 1900789.                                                         | 3.7  | 45        |
| 106 | Halogen Bonding in Perovskite Solar Cells: A New Tool for Improving Solar Energy Conversion.<br>Angewandte Chemie - International Edition, 2022, 61, .                                                             | 13.8 | 45        |
| 107 | Mesoporous Electron-Selective Contacts Enhance the Tolerance to Interfacial Ion Accumulation in<br>Perovskite Solar Cells. ACS Energy Letters, 2018, 3, 163-169.                                                   | 17.4 | 44        |
| 108 | Halogenâ€Bonded Holeâ€Transport Material Suppresses Charge Recombination and Enhances Stability of<br>Perovskite Solar Cells. Advanced Energy Materials, 2021, 11, 2101553.                                        | 19.5 | 44        |

| #   | Article                                                                                                                                                                                                                           | IF   | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 109 | The effect of selective interactions at the interface of polymer–oxide hybrid solar cells. Energy and Environmental Science, 2012, 5, 9068.                                                                                       | 30.8 | 42        |
| 110 | The Impact of Nano―and Microstructure on the Stability of Perovskite Solar Cells. Small, 2018, 14, e1802573.                                                                                                                      | 10.0 | 42        |
| 111 | An efficient perovskite solar cell with symmetrical Zn(ii) phthalocyanine infiltrated buffering porous<br>Al2O3 as the hybrid interfacial hole-transporting layer. Physical Chemistry Chemical Physics, 2016, 18,<br>27083-27089. | 2.8  | 38        |
| 112 | A polyfluoroalkyl imidazolium ionic liquid as iodide ion source in dye sensitized solar cells. Organic<br>Electronics, 2012, 13, 2474-2478.                                                                                       | 2.6  | 37        |
| 113 | Perowskitâ€Solarzellen: atomare Ebene, Schichtqualitäund Leistungsfäigkeit der Zellen. Angewandte<br>Chemie, 2018, 130, 2582-2598.                                                                                                | 2.0  | 37        |
| 114 | An Organic "Donorâ€Free―Dye with Enhanced Openâ€Circuit Voltage in Solidâ€State Sensitized Solar Cells.<br>Advanced Energy Materials, 2014, 4, 1400166.                                                                           | 19.5 | 35        |
| 115 | Tetrahedral Oxyanions in Halogen-Bonded Coordination Networks. Crystal Growth and Design, 2011, 11, 4220-4226.                                                                                                                    | 3.0  | 34        |
| 116 | Highly Efficient Perovskite Solar Cells Based on a Zn <sub>2</sub> SnO <sub>4</sub> Compact Layer.<br>ACS Applied Materials & Interfaces, 2019, 11, 36553-36559.                                                                  | 8.0  | 34        |
| 117 | Robust Inorganic Hole Transport Materials for Organic and Perovskite Solar Cells: Insights into<br>Materials Electronic Properties and Device Performance. Solar Rrl, 2021, 5, 2000555.                                           | 5.8  | 34        |
| 118 | Facile Deposition of Nb <sub>2</sub> O <sub>5</sub> Thin Film as an Electron-Transporting Layer for<br>Highly Efficient Perovskite Solar Cells. ACS Applied Nano Materials, 2018, 1, 4101-4109.                                   | 5.0  | 33        |
| 119 | TiO2-B as an electron transporting material for highly efficient perovskite solar cells. Journal of<br>Power Sources, 2019, 415, 8-14.                                                                                            | 7.8  | 33        |
| 120 | A New 1,3,4â€Oxadiazoleâ€Based Holeâ€Transport Material for Efficient<br>CH <sub>3</sub> NH <sub>3</sub> PbBr <sub>3</sub> Perovskite Solar Cells. ChemSusChem, 2016, 9,<br>657-661.                                              | 6.8  | 31        |
| 121 | Moisture-Induced Crystallographic Reorientations and Effects on Charge Carrier Extraction in Metal<br>Halide Perovskite Solar Cells. ACS Energy Letters, 2020, 5, 3526-3534.                                                      | 17.4 | 30        |
| 122 | High Absorption Coefficient Cyclopentadithiophene Donor-Free Dyes for Liquid and Solid-State<br>Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2016, 120, 15027-15034.                                              | 3.1  | 28        |
| 123 | Oligothiophene Interlayer Effect on Photocurrent Generation for Hybrid TiO <sub>2</sub> /P3HT Solar<br>Cells. ACS Applied Materials & Interfaces, 2014, 6, 17226-17235.                                                           | 8.0  | 27        |
| 124 | Refractive index change dominates the transient absorption response of metal halide perovskite thin films in the near infrared. Physical Chemistry Chemical Physics, 2019, 21, 14663-14670.                                       | 2.8  | 27        |
| 125 | Challenges in tin perovskite solar cells. Physical Chemistry Chemical Physics, 2021, 23, 23413-23427.                                                                                                                             | 2.8  | 27        |
| 126 | Temperature dependent two-photon photoluminescence of<br>CH <sub>3</sub> NH <sub>3</sub> PbBr <sub>3</sub> : structural phase and exciton to free carrier<br>transition. Optical Materials Express, 2018, 8, 511.                 | 3.0  | 26        |

| #   | Article                                                                                                                                                                                                     | IF   | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 127 | Environmental lead exposure from halide perovskites in solar cells. Trends in Ecology and Evolution, 2022, 37, 281-283.                                                                                     | 8.7  | 26        |
| 128 | Strategies toward Stable Perovskite Solar Cells. Advanced Materials Interfaces, 2018, 5, 1800264.                                                                                                           | 3.7  | 24        |
| 129 | The Bloom of Perovskite Optoelectronics: Fundamental Science Matters. ACS Energy Letters, 2019, 4, 861-865.                                                                                                 | 17.4 | 24        |
| 130 | Toward Highâ€Throughput Texturing of Polymer Foils for Enhanced Light Trapping in Flexible Perovskite<br>Solar Cells Using Rollâ€ŧoâ€Roll Hot Embossing. Advanced Engineering Materials, 2020, 22, 1901217. | 3.5  | 24        |
| 131 | Influence of cysteine adsorption on the performance of CdSe quantum dots sensitized solar cells.<br>Materials Chemistry and Physics, 2010, 124, 709-712.                                                    | 4.0  | 22        |
| 132 | Cesium-Incorporated Triple Cation Perovskites Deliver Fully Reversible and Stable Nanoscale Voltage Response. ACS Nano, 2019, 13, 1538-1546.                                                                | 14.6 | 21        |
| 133 | Large Conduction Band Energy Offset Is Critical for High Fill Factors in Inorganic Perovskite Solar<br>Cells. ACS Energy Letters, 2020, 5, 2343-2348.                                                       | 17.4 | 20        |
| 134 | Perovskite Singleâ $\in$ Crystal Solar Cells: Advances and Challenges. Solar Rrl, 2022, 6, .                                                                                                                | 5.8  | 19        |
| 135 | Phosphonic anchoring groups in organic dyes for solid-state solar cells. Physical Chemistry Chemical Physics, 2015, 17, 18780-18789.                                                                        | 2.8  | 18        |
| 136 | Highly efficient Zn2SnO4 perovskite solar cells through band alignment engineering. Chemical<br>Communications, 2019, 55, 14673-14676.                                                                      | 4.1  | 18        |
| 137 | Comparing the excited-state properties of a mixed-cation–mixed-halide perovskite to methylammonium<br>lead iodide. Journal of Chemical Physics, 2020, 152, 104703.                                          | 3.0  | 18        |
| 138 | Lights and Shadows of DMSO as Solvent for Tin Halide Perovskites. Chemistry - A European Journal,<br>2022, 28, .                                                                                            | 3.3  | 18        |
| 139 | Managing Phase Purities and Crystal Orientation for Highâ€Performance and Photostable Cesium Lead<br>Halide Perovskite Solar Cells. Solar Rrl, 2020, 4, 2000213.                                            | 5.8  | 17        |
| 140 | Unravelling fullerene–perovskite interactions introduces advanced blend films for performance-improved solar cells. Sustainable Energy and Fuels, 2019, 3, 2779-2787.                                       | 4.9  | 16        |
| 141 | In situ Nearâ€Ambient Pressure Xâ€ray Photoelectron Spectroscopy Reveals the Influence of Photon Flux<br>and Water on the Stability of Halide Perovskite. ChemSusChem, 2020, 13, 5722-5730.                 | 6.8  | 15        |
| 142 | Small-angle scattering to reveal the colloidal nature of halide perovskite precursor solutions.<br>Journal of Materials Chemistry A, 2021, 9, 13477-13482.                                                  | 10.3 | 15        |
| 143 | Role of Terminal Group Position in Triphenylamine-Based Self-Assembled Hole-Selective Molecules in<br>Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2022, 14, 17461-17469.                    | 8.0  | 15        |
| 144 | Monitoring Charge Carrier Diffusion across a Perovskite Film with Transient Absorption<br>Spectroscopy. Journal of Physical Chemistry Letters, 2020, 11, 445-450.                                           | 4.6  | 14        |

| #   | Article                                                                                                                                                                                                   | IF   | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 145 | Role of the Alkali Metal Cation in the Early Stages of Crystallization of Halide Perovskites. Chemistry of Materials, 2022, 34, 1121-1131.                                                                | 6.7  | 13        |
| 146 | In Situ Methylammonium Chloride-Assisted Perovskite Crystallization Strategy for High-Performance<br>Solar Cells. , 2022, 4, 448-456.                                                                     |      | 13        |
| 147 | Quantitative Predictions of Moisture-Driven Photoemission Dynamics in Metal Halide Perovskites via<br>Machine Learning. Journal of Physical Chemistry Letters, 2022, 13, 2254-2263.                       | 4.6  | 13        |
| 148 | In-situ observation of moisture-induced degradation of perovskite solar cells using laser-beam induced current. , 2016, , .                                                                               |      | 12        |
| 149 | Patterning of perovskite–polymer films by wrinkling instabilities. Soft Matter, 2017, 13, 1654-1659.                                                                                                      | 2.7  | 12        |
| 150 | Perovskite solar cell performance assessment. JPhys Energy, 2020, 2, 044002.                                                                                                                              | 5.3  | 12        |
| 151 | Highâ€Throughput Aging System for Parallel Maximum Power Point Tracking of Perovskite Solar Cells.<br>Energy Technology, 2022, 10, .                                                                      | 3.8  | 11        |
| 152 | Covering effect of conductive glass: a facile route to tailor the grain growth of hybrid perovskites for highly efficient solar cells. Journal of Materials Chemistry A, 2018, 6, 20289-20296.            | 10.3 | 10        |
| 153 | The Effects of Incident Photon Energy on the Time-Dependent Voltage Response of Lead Halide<br>Perovskites. Chemistry of Materials, 2019, 31, 8969-8976.                                                  | 6.7  | 10        |
| 154 | Halogen-bond driven self-assembly of perfluorocarbon monolayers on silicon nitride. Journal of<br>Materials Chemistry A, 2019, 7, 24445-24453.                                                            | 10.3 | 10        |
| 155 | Reply to the "Comment on the publication â€~Ferroelectricity-free lead halide perovskites' by Gomez <i>et<br/>al.</i> ―by Colsmann <i>et al.</i> . Energy and Environmental Science, 2020, 13, 1892-1895. | 30.8 | 10        |
| 156 | Hybrid Perovskite Degradation from an Optical Perspective: A Spectroscopic Ellipsometry Study from the Deep Ultraviolet to the Middle Infrared. Advanced Optical Materials, 2022, 10, 2101553.            | 7.3  | 10        |
| 157 | Perovskite Solar Cells Go Lead Free. Joule, 2017, 1, 887.                                                                                                                                                 | 24.0 | 9         |
| 158 | Perovskite solar cells. , 2019, , 417-446.                                                                                                                                                                |      | 9         |
| 159 | 2-Methylimidazole as an interlayer for the enhancement of the open-circuit voltage in perovskite solar cells. Journal of Power Sources, 2020, 450, 227714.                                                | 7.8  | 9         |
| 160 | Dendriticâ€Like Molecules Built on a Pillar[5]arene Core as Hole Transporting Materials for Perovskite<br>Solar Cells. Chemistry - A European Journal, 2021, 27, 8110-8117.                               | 3.3  | 9         |
| 161 | High temperature crystal chemistry of the n=3 Ruddlesden–Popper phase LaSr3Fe1.5Co1.5O10â~δ. Solid<br>State Ionics, 2015, 270, 54-60.                                                                     | 2.7  | 8         |
| 162 | Ultralow surface energy self-assembled monolayers of iodo-perfluorinated alkanes on silica driven by<br>halogen bonding. Nanoscale, 2019, 11, 2401-2411.                                                  | 5.6  | 8         |

| #   | Article                                                                                                                                                                                                                              | IF   | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 163 | Tuning of Ionic Liquid Crystal Properties by Combining Halogen Bonding and Fluorous Effect.<br>ChemPlusChem, 2021, 86, 469-474.                                                                                                      | 2.8  | 8         |
| 164 | Energy Distribution in Tin Halide Perovskite. Solar Rrl, 2022, 6, 2100825.                                                                                                                                                           | 5.8  | 8         |
| 165 | Fluoridchemie in Zinnâ€Halogenidâ€Perowskiten. Angewandte Chemie, 2021, 133, 21753-21762.                                                                                                                                            | 2.0  | 5         |
| 166 | Suppression of Electron Trapping in MAPbI <sub>3</sub> Perovskite by Sr <sup>2+</sup> Doping.<br>Physica Status Solidi - Rapid Research Letters, 2020, 14, 2000307.                                                                  | 2.4  | 4         |
| 167 | Correction to "How to Make over 20% Efficient Perovskite Solar Cells in Regular<br>( <i>n</i> – <i>i</i> – <i>p</i> ) and Inverted ( <i>p</i> – <i>i</i> – <i>n</i> ) Architectures― Chemistry of<br>Materials, 2019, 31, 8576-8576. | 6.7  | 3         |
| 168 | Solution-based low-temperature CsPbl <sub>3</sub> nanoparticle perovskite solar cells. Materials<br>Advances, 2022, 3, 1737-1746.                                                                                                    | 5.4  | 3         |
| 169 | Halogen Bonding in Perovskite Solar Cells: A New Tool for Improving Solar Energy Conversion.<br>Angewandte Chemie, 0, , .                                                                                                            | 2.0  | 3         |
| 170 | Solar Cells: Ionic Liquid Control Crystal Growth to Enhance Planar Perovskite Solar Cells Efficiency<br>(Adv. Energy Mater. 20/2016). Advanced Energy Materials, 2016, 6, .                                                          | 19.5 | 2         |
| 171 | Novel materials for stable perovskite solar cells. , 2017, , .                                                                                                                                                                       |      | 1         |
| 172 | Control refinement for discrete-time descriptor systems: a behavioural approach via simulation relations. IFAC-PapersOnLine, 2017, 50, 15822-15827.                                                                                  | 0.9  | 1         |
| 173 | Frontispiece: Perovskite Solar Cells: From the Laboratory to the Assembly Line. Chemistry - A European<br>Journal, 2018, 24, .                                                                                                       | 3.3  | 1         |
| 174 | Stability of materials and complete devices. , 2020, , 197-215.                                                                                                                                                                      |      | 1         |
| 175 | Structural Properties of Perovskite Layers in High-Performance Solar Cells. , 0, , .                                                                                                                                                 |      | 1         |
| 176 | Disorder in self-assembed halogen-bonded perfluoroalkyl onium salts. Acta Crystallographica Section<br>A: Foundations and Advances, 2010, 66, s245-s246.                                                                             | 0.3  | 0         |
| 177 | Sub 150 °C processed meso-superstructured perovskite solar cells with enhanced efficiency (presentation video). , 2014, , .                                                                                                          |      | 0         |
| 178 | Frontispiece: A Methoxydiphenylamine‣ubstituted Carbazole Twin Derivative: An Efficient<br>Holeâ€Transporting Material for Perovskite Solar Cells. Angewandte Chemie - International Edition,<br>2015, 54, .                         | 13.8 | 0         |
| 179 | Frontispiz: Methoxydiphenylamin-substituiertes Carbazol-Zwillingsderivat: ein effizienter organischer<br>Lochleiter für Perowskit-Solarzellen. Angewandte Chemie, 2015, 127, n/a-n/a.                                                | 2.0  | 0         |
| 180 | Novel materials for stable perovskite solar cells (Presentation Recording). Proceedings of SPIE, 2015, ,                                                                                                                             | 0.8  | 0         |

| #   | Article                                                                                                                                                                | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 181 | Specialty Grand Challenges in Optoelectronics. Frontiers in Electronics, 2020, 1, .                                                                                    | 3.2 | о         |
| 182 | Tin halide perovskites for efficient lead-free solar cells. , 2021, , 259-285.                                                                                         |     | 0         |
| 183 | Waterâ€Induced and Wavelengthâ€Dependent Light Absorption and Emission Dynamics in Tripleâ€Cation<br>Halide Perovskites. Advanced Optical Materials, 2021, 9, 2100710. | 7.3 | Ο         |
| 184 | Innenrücktitelbild: Fluoridchemie in Zinnâ€Halogenidâ€Perowskiten (Angew. Chem. 39/2021). Angewandte<br>Chemie, 2021, 133, 21763-21763.                                | 2.0 | 0         |
| 185 | Size matching of interacting moieties: a design principle in crystal engineering. Acta Crystallographica<br>Section A: Foundations and Advances, 2010, 66, s82-s82.    | 0.3 | 0         |
| 186 | The impact of metal ions doping on the defect chemistry of methylammonium lead iodide. , 0, , .                                                                        |     | 0         |
| 187 | Computational modelling of HTM/Perovskite interface: The role of methylammonium cation. , 0, , .                                                                       |     | 0         |
| 188 | 3D simulation of ion migration within the microstructure of perovskite solar cells. , 0, , .                                                                           |     | 0         |
| 189 | Perovskite Work Function Tuning through Self-Assembling Monolayers. , 0, , .                                                                                           |     | 0         |
| 190 | How to Improve the Stability of All Inorganic Perovskite Solar Cells?. , 0, , .                                                                                        |     | 0         |
| 191 | Impact of Alkaline Earth Metal Doping on the Stability of Perovskite Solar Cells. , 0, , .                                                                             |     | 0         |
| 192 | Structural Properties of Perovskite Layers in High-Performance Solar Cells. , 0, , .                                                                                   |     | 0         |
| 193 | Active Materials, multicomponent and Interfaces for Stable Perovskite Solar Cells. , 0, , .                                                                            |     | 0         |
| 194 | Work Function Tuning through Self-Assembling Monolayers of Fluorinated Molecules. , 0, , .                                                                             |     | 0         |
| 195 | Patterning of transparent polymers using high-throughput methods: application in flexible perovskite solar cells with enhanced light trapping. , 2020, , .             |     | 0         |
| 196 | Tuning Halide Perovskite Work Function. , 0, , .                                                                                                                       |     | 0         |

Tuning Halide Perovskite Work Function., 0,,. 196