
MichaÅ, SÅ,owiÅ,,ski

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3837617/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Climate variability and associated vegetation response throughout Central and Eastern Europe (CEE) between 60 and 8Âka. Quaternary Science Reviews, 2014, 106, 206-224.	3.0	188
2	Tipping point in plant–fungal interactions under severe drought causes abrupt rise in peatland ecosystem respiration. Global Change Biology, 2018, 24, 972-986.	9.5	98
3	Long-term hydrological dynamics and fire history over the last 2000 years in CE Europe reconstructed from a high-resolution peat archive. Quaternary Science Reviews, 2015, 112, 138-152.	3.0	82
4	Tracing the Laacher See Tephra in the varved sediment record of the Trzechowskie palaeolake in central Northern Poland. Quaternary Science Reviews, 2013, 76, 129-139.	3.0	72
5	Holocene fire activity during low-natural flammability periods reveals scale-dependent cultural human-fire relationships in Europe. Quaternary Science Reviews, 2018, 201, 44-56.	3.0	67
6	Holocene tephrostratigraphy of varved sediment records from Lakes Tiefer See (NE Germany) and Czechowskie (N Poland). Quaternary Science Reviews, 2016, 132, 1-14.	3.0	61
7	A novel testate amoebae trait-based approach to infer environmental disturbance in Sphagnum peatlands. Scientific Reports, 2016, 6, 33907.	3.3	57
8	Seasonal changes in Sphagnum peatland testate amoeba communities along a hydrological gradient. European Journal of Protistology, 2014, 50, 445-455.	1.5	54
9	Fire hazard modulation by long-term dynamics in land cover and dominant forest type in eastern and central Europe. Biogeosciences, 2020, 17, 1213-1230.	3.3	52
10	Climatic and morphological controls on diachronous postglacial lake and river valley evolution in the area of Last Glaciation, northern Poland. Quaternary Science Reviews, 2015, 109, 13-27.	3.0	51
11	Unveiling tipping points in long-term ecological records from <i>Sphagnum</i> -dominated peatlands. Biology Letters, 2019, 15, 20190043.	2.3	47
12	The role of melting dead ice on landscape transformation in the early Holocene in Tuchola Pinewoods, North Poland. Quaternary International, 2015, 388, 64-75.	1.5	43
13	Drought as a stress driver of ecological changes in peatland - A palaeoecological study of peatland development between 3500 BCE and 200 BCE in central Poland. Palaeogeography, Palaeoclimatology, Palaeoecology, 2016, 461, 272-291.	2.3	43
14	Hydrological dynamics and fire history of the last 1300 years in western Siberia reconstructed from a high-resolution, ombrotrophic peat archive. Quaternary Research, 2015, 84, 312-325.	1.7	41
15	The response of a shallow lake and its catchment to Late Glacial climate changes — A case study from eastern Poland. Catena, 2015, 126, 1-10.	5.0	41
16	Minimum winter temperature reconstruction from average earlywood vessel area of European oak (Quercus robur) in N-Poland. Palaeogeography, Palaeoclimatology, Palaeoecology, 2016, 449, 520-530.	2.3	38
17	Paleoecological and historical data as an important tool in ecosystem management. Journal of Environmental Management, 2019, 236, 755-768.	7.8	38
18	Differential proxy responses to late AllerÃ,d and early Younger Dryas climatic change recorded in varved sediments of the Trzechowskie palaeolake in Northern Poland. Quaternary Science Reviews, 2017, 158, 94-106	3.0	36

ΜιςμαÅ, SÅ,οωιÅ,,,ski

#	Article	IF	CITATIONS
19	Anthropogenic- and natural sources of dust in peatland during the Anthropocene. Scientific Reports, 2016, 6, 38731.	3.3	34
20	Abrupt <i>Alnus</i> population decline at the end of the first millennium CE in Europe – The event ecology, possible causes and implications. Holocene, 2019, 29, 1335-1349.	1.7	34
21	Toward a Generalizable Framework of Disturbance Ecology Through Crowdsourced Science. Frontiers in Ecology and Evolution, 2021, 9, .	2.2	34
22	Predator–prey mass ratio drives microbial activity under dry conditions in <i>Sphagnum</i> peatlands. Ecology and Evolution, 2018, 8, 5752-5764.	1.9	33
23	Palaeoecological data indicates land-use changes across Europe linked to spatial heterogeneity in mortality during the Black Death pandemic. Nature Ecology and Evolution, 2022, 6, 297-306.	7.8	33
24	Always on the tipping point – A search for signals of past societies and related peatland ecosystem critical transitions during the last 6500 years in N Poland. Quaternary Science Reviews, 2019, 225, 105954.	3.0	32
25	Constraining the time span between the Early Holocene HÃsseldalen and Askjaâ€S Tephras through varve counting in the Lake Czechowskie sediment record, Poland. Journal of Quaternary Science, 2016, 31, 103-113.	2.1	31
26	The Impact of Experimental Temperature and Water Level Manipulation on Carbon Dioxide Release in a Poor Fen in Northern Poland. Wetlands, 2018, 38, 551-563.	1.5	31
27	Multiple drivers of Holocene lake level changes at a lowland lake in northeastern Germany. Boreas, 2016, 45, 828-845.	2.4	27
28	Solar cycles and depositional processes in annual 10 Be from two varved lake sediment records. Earth and Planetary Science Letters, 2015, 428, 44-51.	4.4	24
29	Human-induced fire regime shifts during 19th century industrialization: A robust fire regime reconstruction using northern Polish lake sediments. PLoS ONE, 2019, 14, e0222011.	2.5	23
30	Site-specific sediment responses to climate change during the last 140 years in three varved lakes in Northern Poland. Holocene, 2018, 28, 464-477.	1.7	22
31	Impact of large water level fluctuations on geomorphological processes and their interactions in the shore zone of a dam reservoir. Journal of Great Lakes Research, 2016, 42, 926-941.	1.9	21
32	Advances in understanding calcite varve formation: new insights from a dual lake monitoring approach in the southern Baltic lowlands. Boreas, 2021, 50, 419-440.	2.4	21
33	New insights into lake responses to rapid climate change: the Younger Dryas in Lake GoÅ›ciÄż, central Poland. Boreas, 2021, 50, 535-555.	2.4	21
34	Cascading effects between climate, vegetation, and macroinvertebrate fauna in 14,000-year palaeoecological investigations of a shallow lake in eastern Poland. Ecological Indicators, 2018, 85, 329-341.	6.3	20
35	Leaf wax <i>n</i> -alkane distributions record ecological changes during the Younger Dryas at Trzechowskie paleolake (northern Poland) without temporal delay. Climate of the Past, 2018, 14, 1607-1624.	3.4	20
36	Widespread, episodic decline of alder (<i>Alnus</i>) during the medieval period in the boreal forest of Europe. Journal of Quaternary Science, 2017, 32, 903-907.	2.1	19

ΜιςμαÅ, SÅ,οωιÅ,,,ski

#	Article	IF	CITATIONS
37	An 810â€year history of cold season temperature variability for northern Poland. Boreas, 2018, 47, 443-453.	2.4	18
38	Synchronizing ¹⁰ Be in two varved lake sediment records to IntCal13 ¹⁴ C during three grand solar minima. Climate of the Past, 2018, 14, 687-696.	3.4	18
39	Searching for the 4.2Âka climate event at Lake Spore, Poland. Catena, 2020, 191, 104565.	5.0	18
40	Chironomidae Morphological Types and Functional Feeding Groups as a Habitat Complexity Vestige. Frontiers in Ecology and Evolution, 2021, 8, .	2.2	18
41	Dystrophication of lake Suchar IV (NE Poland): an alternative way of lake development. , 2019, 38, 391-416.		18
42	Climate variability and lake ecosystem responses in western Scandinavia (Norway) during the last Millennium. Palaeogeography, Palaeoclimatology, Palaeoecology, 2017, 466, 231-239.	2.3	17
43	Disturbance and resilience of a <i>Sphagnum</i> peatland in western Russia (Western Dvina Lakeland) during the last 300 years: A multiproxy, high-resolution study. Holocene, 2020, 30, 1552-1566.	1.7	17
44	The Late Glacial pedogenesis interrupted by aeolian activity in Central Poland – records from the Lake GoÅ›ciÄż catchment. Catena, 2020, 185, 104286.	5.0	16
45	Varve microfacies and chronology from a new sediment record of Lake GoÅ›ciÄż (Poland). Quaternary Science Reviews, 2021, 251, 106715.	3.0	15
46	First discovery of Holocene Alaskan and Icelandic tephra in Polish peatlands. Journal of Quaternary Science, 2017, 32, 457-462.	2.1	13
47	Assessing the responses of <i>Sphagnum</i> micro-eukaryotes to climate changes using high throughput sequencing. PeerJ, 2020, 8, e9821.	2.0	13
48	On the border between land and water: The environmental conditions of the Neolithic occupation from 4.3 until 1.6 ka BC at Serteya, Western Russia. Geoarchaeology - an International Journal, 2021, 36, 173-202.	1.5	12
49	The role of Medieval road operation on cultural landscape transformation. Scientific Reports, 2021, 11, 20876.	3.3	12
50	Hypolimnetic oxygen conditions influence varve preservation and δ13C of sediment organic matter in Lake Tiefer See, NE Germany. Journal of Paleolimnology, 2019, 62, 181-194.	1.6	11
51	Geology, permafrost, and lake level changes as factors initiating landslides on Olkhon Island (Lake) Tj ETQq1 1 0	.784314 r 5.4	gBT /Overlock
52	Ecohydrological Changes and Resilience of a Shallow Lake Ecosystem under Intense Human Pressure and Recent Climate Change. Water (Switzerland), 2019, 11, 32.	2.7	9
53	Spontaneous self-combustion of organic-rich lateglacial lake sediments after freeze-drying. Journal of Paleolimnology, 2016, 55, 185-194.	1.6	8
54	Biological and geochemical indicators of climatic oscillations during the Last Glacial Termination, the Kaniewo palaeolake (Central Poland). Ecological Indicators, 2020, 114, 106301.	6.3	8

ΜιςμαÅ, SÅ,οωιÅ,,,ski

#	Article	IF	CITATIONS
55	Stages of soil development in the coastal zone of a disappearing lake—a case study from central Poland. Journal of Soils and Sediments, 2021, 21, 1420-1436.	3.0	7
56	Long-term microclimate study of a peatland in Central Europe to understand microrefugia. International Journal of Biometeorology, 2022, 66, 817-832.	3.0	7
57	Climatic and hydrological variability as a driver of the Lake GoÅ›ciÄż biota during the Younger Dryas. Catena, 2022, 212, 106049.	5.0	7
58	Historical human impact on productivity and biodiversity in a subalpine oligotrophic lake in Scandinavia. Journal of Paleolimnology, 2020, 63, 1-20.	1.6	6
59	Tracking fire activity and post-fire limnological responses using the varved sedimentary sequence of Lake Jaczno, Poland. Holocene, 2022, 32, 515-528.	1.7	6
60	Effects of experimental warming on Betula nana epidermal cell growth tested over its maximum climatological growth range. PLoS ONE, 2021, 16, e0251625.	2.5	5
61	Searching for an ecological baseline: Long-term ecology of a post-extraction restored bog in Northern Estonia. Quaternary International, 2022, 607, 65-78.	1.5	5
62	Pine Forest Management and Disturbance in Northern Poland: Combining High-Resolution 100-Year-Old Paleoecological and Remote Sensing Data. Frontiers in Ecology and Evolution, 2021, 9, .	2.2	5
63	Small peatland with a big story: 600-year paleoecological and historical data from a kettle-hole peatland in Western Russia. Holocene, 2021, 31, 1761-1776.	1.7	4
64	Fires, vegetation, and human—The history of critical transitions during the last 1000 years in Northeastern Mongolia. Science of the Total Environment, 2022, 838, 155660.	8.0	4
65	The palaeoenvironment and settlement history of a lakeshore setting: An interdisciplinary study from the multi-layered archaeological site of Serteya II, Western Russia. Journal of Archaeological Science: Reports, 2021, 40, 103219.	0.5	3
66	Charakterystyka środowisk depozycyjnych Jeziora Czechowskiego i jego otoczenia. Landform Analysis, 0, 25, 55-75.	0.0	2
67	Assessing the links between resilience, disturbance and functional traits in paleoecological datasets. Past Global Change Magazine, 2018, 26, 87-87.	0.1	2
68	Comment on the paper â€~Impact of volcanic eruptions on the environment and climatic conditions in the area of Poland (Central Europe)' by A. GaÁ,aÅ›. Earth-Science Reviews, 2017, 172, 248-250.	9.1	1
69	Znaczenie wysokorozdzielczych wielowskaźnikowych (multi-proxy) badaÅ,, paleoekologicznych dla geografii historycznej i historii gospodarczej. , 2020, , 30.	0.1	1
70	Mass movements in an isolated area of permafrost in the era of climate change (Olkhon, East Siberia). Przeglad Geograficzny, 2015, 87, 457-476.	0.2	0