Bryan P Traynor

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3837443/publications.pdf

Version: 2024-02-01

43 papers

11,927 citations

304368 22 h-index 276539 41 g-index

44 all docs

44 docs citations

44 times ranked 13315 citing authors

#	Article	IF	CITATIONS
1	A Hexanucleotide Repeat Expansion in C9ORF72 Is the Cause of Chromosome 9p21-Linked ALS-FTD. Neuron, 2011, 72, 257-268.	3.8	3,833
2	State of play in amyotrophic lateral sclerosis genetics. Nature Neuroscience, 2014, 17, 17-23.	7.1	1,300
3	Mutations in prion-like domains in hnRNPA2B1 and hnRNPA1 cause multisystem proteinopathy and ALS. Nature, 2013, 495, 467-473.	13.7	1,249
4	Exome Sequencing Reveals VCP Mutations as a Cause of Familial ALS. Neuron, 2010, 68, 857-864.	3.8	1,100
5	Frequency of the C9orf72 hexanucleotide repeat expansion in patients with amyotrophic lateral sclerosis and frontotemporal dementia: a cross-sectional study. Lancet Neurology, The, 2012, 11, 323-330.	4.9	1,039
6	Genome-wide Analyses Identify KIF5A as a Novel ALS Gene. Neuron, 2018, 97, 1268-1283.e6.	3.8	517
7	Novel genes associated with amyotrophic lateral sclerosis: diagnostic and clinical implications. Lancet Neurology, The, 2018, 17, 94-102.	4.9	432
8	Mutations in the Matrin 3 gene cause familial amyotrophic lateral sclerosis. Nature Neuroscience, 2014, 17, 664-666.	7.1	398
9	Clinico-pathological features in amyotrophic lateral sclerosis with expansions in C9ORF72. Brain, 2012, 135, 751-764.	3.7	293
10	Ethnic variation in the incidence of ALS: A systematic review. Neurology, 2007, 68, 1002-1007.	1.5	236
11	Chromosome 9p21 in amyotrophic lateral sclerosis in Finland: a genome-wide association study. Lancet Neurology, The, 2010, 9, 978-985.	4.9	236
12	Common and rare variant association analyses in amyotrophic lateral sclerosis identify 15 risk loci with distinct genetic architectures and neuron-specific biology. Nature Genetics, 2021, 53, 1636-1648.	9.4	223
13	Clinical characteristics of patients with familial amyotrophic lateral sclerosis carrying the pathogenic GGGGCC hexanucleotide repeat expansion of C9ORF72. Brain, 2012, 135, 784-793.	3.7	182
14	A Genome-Wide Association Study of Myasthenia Gravis. JAMA Neurology, 2015, 72, 396.	4.5	139
15	Genetic causes of amyotrophic lateral sclerosis: New genetic analysis methodologies entailing new opportunities and challenges. Brain Research, 2015, 1607, 75-93.	1.1	132
16	Age-related penetrance of the C9orf72 repeat expansion. Scientific Reports, 2017, 7, 2116.	1.6	102
17	Genetic architecture of ALS in Sardinia. Neurobiology of Aging, 2014, 35, 2882.e7-2882.e12.	1.5	60
18	Pathogenic Huntingtin Repeat Expansions in Patients with Frontotemporal Dementia and Amyotrophic Lateral Sclerosis. Neuron, 2021, 109, 448-460.e4.	3.8	56

#	Article	IF	CITATIONS
19	ALS-associated KIF5A mutations abolish autoinhibition resulting in a toxic gain of function. Cell Reports, 2022, 39, 110598.	2.9	47
20	TBK1 is associated with ALS and ALS-FTD in Sardinian patients. Neurobiology of Aging, 2016, 43, 180.e1-180.e5.	1.5	40
21	<i>OPTN</i> 691_692insAG is a founder mutation causing recessive ALS and increased risk in heterozygotes. Neurology, 2016, 86, 446-453.	1.5	37
22	Association of a Novel <i>ACTA1</i> Mutation With a Dominant Progressive Scapuloperoneal Myopathy in an Extended Family. JAMA Neurology, 2015, 72, 689.	4.5	35
23	Unraveling the complex interplay between genes, environment, and climate in ALS. EBioMedicine, 2022, 75, 103795.	2.7	32
24	Mutational Analysis of Known ALS Genes in an Italian Population-Based Cohort. Neurology, 2021, 96, e600-e609.	1.5	23
25	ATXN2 is a modifier of phenotype in ALS patients of Sardinian ancestry. Neurobiology of Aging, 2015, 36, 2906.e1-2906.e5.	1.5	19
26	Identification of a pathogenic intronic KIF5A mutation in an ALS-FTD kindred. Neurology, 2020, 95, 1015-1018.	1.5	19
27	Identifying and predicting amyotrophic lateral sclerosis clinical subgroups: a population-based machine-learning study. The Lancet Digital Health, 2022, 4, e359-e369.	5.9	19
28	Alzheimer risk loci and associated neuropathology in a population-based study (Vantaa 85+). Neurology: Genetics, 2018, 4, e211.	0.9	16
29	C9orf72 hexanucleotide repeat length in older population: normal variation and effects on cognition. Neurobiology of Aging, 2019, 84, 242.e7-242.e12.	1.5	16
30	The NGS technology for the identification of genes associated with the ALS. A systematic review. European Journal of Clinical Investigation, 2020, 50, e13228.	1.7	16
31	Use of Genetic Testing in Amyotrophic Lateral Sclerosis by Neurologists. JAMA Neurology, 2017, 74, 125.	4.5	15
32	Oligogenic basis of sporadic ALS. Neurology: Genetics, 2019, 5, e335.	0.9	15
33	High frequency of C9orf72 hexanucleotide repeat expansion in amyotrophic lateral sclerosis patients from two founder populations sharing the same risk haplotype. Neurobiology of Aging, 2018, 64, 160.e1-160.e7.	1.5	11
34	ALS in Finland. Neurology: Genetics, 2022, 8, e665.	0.9	11
35	Exploring the Epigenetics of Alzheimer Disease. JAMA Neurology, 2015, 72, 8.	4.5	8
36	Investigating RFC1 expansions in sporadic amyotrophic lateral sclerosis. Journal of the Neurological Sciences, 2021, 430, 118061.	0.3	8

#	Article	IF	CITATIONS
37	Dementia Research—A Roadmap for the Next Decade. JAMA Neurology, 2017, 74, 141.	4.5	3
38	Highlighting the clinical potential of HTT repeat expansions in Frontotemporal Dementia and Amyotrophic Lateral Sclerosis. Neuron, 2021, 109, 1947-1948.	3.8	3
39	C9orf72 hexanucleotide repeat expansions are not a common cause of obsessive-compulsive disorder. Journal of the Neurological Sciences, 2017, 375, 71-72.	0.3	2
40	High BMI is associated with low ALS risk. Neurology, 2019, 93, 189-191.	1.5	2
41	Special Issue on amyotrophic lateral sclerosis. Experimental Neurology, 2014, 262, 73-74.	2.0	1
42	Genetic counselling: Psychological impact and concerns. , 2018, , .		1
43	To Dement or Not to Dement, That Is the Question. JAMA Neurology, 2016, 73, 383.	4.5	0