
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3837346/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mistaken identity may explain why male sea snakes (Aipysurus laevis, Elapidae, Hydrophiinae) "attack― scuba divers. Scientific Reports, 2021, 11, 15267.	1.6	2
2	Do morphological adaptations for gliding in frogs influence clinging and jumping?. Journal of Zoology, 2020, 310, 55-63.	0.8	2
3	Host thermoregulatory constraints predict growth of an amphibian chytrid pathogen (Batrachochytrium dendrobatidis). Journal of Thermal Biology, 2020, 87, 102472.	1.1	7
4	Infection dynamics, dispersal, and adaptation: understanding the lack of recovery in a remnant frog population following a disease outbreak. Heredity, 2020, 125, 110-123.	1.2	9
5	Citizen science data accurately predicts expert-derived species richness at a continental scale when sampling thresholds are met. Biodiversity and Conservation, 2020, 29, 1323-1337.	1.2	23
6	Status and priority conservation actions for Australian frog species. Biological Conservation, 2020, 247, 108543.	1.9	48
7	Microbiome diversity and composition varies across body areas in a freshwater turtle. Microbiology (United Kingdom), 2020, 166, 440-452.	0.7	15
8	Spinal arthritis in invasive cane toads is linked to rate of dispersal as well as to latitude. Scientific Reports, 2019, 9, 13965.	1.6	1
9	Island of opportunity: can New Guinea protect amphibians from a globally emerging pathogen?. Frontiers in Ecology and the Environment, 2019, 17, 348-354.	1.9	10
10	The return of the frogs: The importance of habitat refugia in maintaining diversity during a disease outbreak. Molecular Ecology, 2019, 28, 2731-2745.	2.0	8
11	Tadpole species have variable roles in litter breakdown, sediment removal, and nutrient cycling in a tropical stream. Freshwater Science, 2019, 38, 103-112.	0.9	7
12	Seasonal, annual and decadal change in tadpole populations in tropical Australian streams. Amphibia - Reptilia, 2019, 40, 447-459.	0.1	2
13	Methods for normalizing microbiome data: An ecological perspective. Methods in Ecology and Evolution, 2019, 10, 389-400.	2.2	225
14	Spinal arthritis in cane toads across the Australian landscape. Scientific Reports, 2018, 8, 12458.	1.6	3
15	Increased Numbers of Culturable Inhibitory Bacterial Taxa May Mitigate the Effects of Batrachochytrium dendrobatidis in Australian Wet Tropics Frogs. Frontiers in Microbiology, 2018, 9, 1604.	1.5	22
16	Disentangling causes of seasonal infection prevalence patterns: tropical tadpoles and chytridiomycosis as a model system. Diseases of Aquatic Organisms, 2018, 130, 83-93.	0.5	7
17	Effects of emerging infectious diseases on host population genetics: a review. Conservation Genetics, 2017, 18, 1235-1245.	0.8	39
18	Using a Bayesian network to clarify areas requiring research in a host–pathogen system. Conservation Biology, 2017, 31, 1373-1382.	2.4	4

#	Article	IF	CITATIONS
19	Infection increases vulnerability to climate change via effects on host thermal tolerance. Scientific Reports, 2017, 7, 9349.	1.6	84
20	White blood cell profiles in amphibians help to explain disease susceptibility following temperature shifts. Developmental and Comparative Immunology, 2017, 77, 280-286.	1.0	31
21	Realistic heat pulses protect frogs from disease under simulated rainforest frog thermal regimes. Functional Ecology, 2017, 31, 2274-2286.	1.7	30
22	Fighting an uphill battle: the recovery of frogs in Australia's Wet Tropics. Ecology, 2017, 98, 3221-3223.	1.5	25
23	Robust calling performance in frogs infected by a deadly fungal pathogen. Ecology and Evolution, 2016, 6, 5964-5972.	0.8	10
24	Seasonal Reproductive Cycles of Cane Toads and Their Implications for Control. Herpetologica, 2016, 72, 288-292.	0.2	11
25	Lowâ€cost fluctuatingâ€temperature chamber for experimental ecology. Methods in Ecology and Evolution, 2016, 7, 1567-1574.	2.2	28
26	Mixed population genomics support for the central marginal hypothesis across the invasive range of the cane toad (<i>Rhinella marina</i>) in Australia. Molecular Ecology, 2016, 25, 4161-4176.	2.0	38
27	Rapid differentiation of sexual signals in invasive toads: call variation among populations. Scientific Reports, 2016, 6, 28158.	1.6	6
28	Isolated frogs in a crowded world: Effects of human-caused habitat loss on frog heterozygosity and fluctuating asymmetry. Biological Conservation, 2016, 195, 52-59.	1.9	23
29	Cell Density Effects of Frog Skin Bacteria on Their Capacity to Inhibit Growth of the Chytrid Fungus, Batrachochytrium dendrobatidis. Microbial Ecology, 2016, 71, 124-130.	1.4	13
30	Natural disturbance reduces disease risk in endangered rainforest frog populations. Scientific Reports, 2015, 5, 13472.	1.6	40
31	Invasive house geckos are more willing to use artificial lights than are native geckos. Austral Ecology, 2015, 40, 982-987.	0.7	27
32	Testing the Relationship between Human Occupancy in the Landscape and Tadpole Developmental Stress. PLoS ONE, 2015, 10, e0120172.	1.1	6
33	Seasonal Ecology and Behavior of an Endangered Rainforest Frog (Litoria rheocola) Threatened by Disease. PLoS ONE, 2015, 10, e0127851.	1.1	21
34	Infection dynamics in frog populations with different histories of decline caused by a deadly disease. Oecologia, 2015, 179, 1099-1110.	0.9	26
35	Antifungal isolates database of amphibian skinâ€associated bacteria and function against emerging fungal pathogens. Ecology, 2015, 96, 595-595.	1.5	192
36	Visible Implant Elastomer as a Viable Marking Technique for Common Mistfrogs (Litoria rheocola). Herpetologica, 2015, 71, 96-101.	0.2	9

#	Article	IF	CITATIONS
37	Condition-dependent reproductive effort in frogs infected by a widespread pathogen. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20150694.	1.2	26
38	Population and Community Body Size Structure Across a Complex Environmental Gradient. Advances in Ecological Research, 2015, , 115-167.	1.4	7
39	Why do male and female cane toads, Rhinella marina, respond differently to advertisement calls?. Animal Behaviour, 2015, 109, 141-147.	0.8	14
40	Some lights repel amphibians: implications for improving trap lures for invasive species. International Journal of Pest Management, 2015, 61, 305-311.	0.9	7
41	Patterns of Batrachochytrium dendrobatidis transmission between tadpoles in a high-elevation rainforest stream in tropical Australia. Diseases of Aquatic Organisms, 2015, 115, 213-221.	0.5	8
42	Cool Temperatures Reduce Antifungal Activity of Symbiotic Bacteria of Threatened Amphibians – Implications for Disease Management and Patterns of Decline. PLoS ONE, 2014, 9, e100378.	1.1	76
43	Intermittent Pool Beds Are Permanent Cyclic Habitats with Distinct Wet, Moist and Dry Phases. PLoS ONE, 2014, 9, e108203.	1.1	12
44	Hostâ€ s pecific thermal profiles affect fitness of a widespread pathogen. Ecology and Evolution, 2014, 4, 4053-4064.	0.8	19
45	Visible Implant Elastomer Marking Does Not Affect Short-term Movements or Survival Rates of the Treefrog Litoria rheocola. Herpetologica, 2014, 70, 23.	0.2	20
46	Mechanisms causing variation in sexual size dimorphism in three sympatric, congeneric lizards. Ecology, 2014, 95, 1531-1544.	1.5	10
47	Experimental evolution alters the rate and temporal pattern of population growth in <i>Batrachochytrium dendrobatidis</i> , a lethal fungal pathogen of amphibians. Ecology and Evolution, 2014, 4, 3633-3641.	0.8	28
48	Using pairs of physiological models to estimate temporal variation in amphibian body temperature. Journal of Thermal Biology, 2014, 45, 22-29.	1.1	10
49	Screening bacterial metabolites for inhibitory effects against Batrachochytrium dendrobatidis using a spectrophotometric assay. Diseases of Aquatic Organisms, 2013, 103, 77-85.	0.5	73
50	Hot bodies protect amphibians against chytrid infection in nature. Scientific Reports, 2013, 3, 1515.	1.6	123
51	Underestimated ranges and overlooked refuges from amphibian chytridiomycosis. Diversity and Distributions, 2013, 19, 1313-1321.	1.9	14
52	Fluctuating temperature effects. Nature Climate Change, 2013, 3, 101-103.	8.1	3
53	Variation in Thermal Performance of a Widespread Pathogen, the Amphibian Chytrid Fungus Batrachochytrium dendrobatidis. PLoS ONE, 2013, 8, e73830.	1.1	106
54	Elevation, Temperature, and Aquatic Connectivity All Influence the Infection Dynamics of the Amphibian Chytrid Fungus in Adult Frogs. PLoS ONE, 2013, 8, e82425.	1.1	53

#	Article	IF	CITATIONS
55	Context-dependent symbioses and their potential roles in wildlife diseases. Proceedings of the Royal Society B: Biological Sciences, 2012, 279, 1457-1465.	1.2	76
56	There Is No Evidence for a Temporal Link between Pathogen Arrival and Frog Extinctions in North-Eastern Australia. PLoS ONE, 2012, 7, e52502.	1.1	8
57	Does waterproofing Thermochron iButton dataloggers influence temperature readings?. Journal of Thermal Biology, 2012, 37, 260-264.	1.1	77
58	lmmune evasion or avoidance: Fungal skin infection linked to reduced defence peptides in Australian green-eyed treefrogs, Litoria serrata. Fungal Biology, 2012, 116, 1203-1211.	1.1	22
59	Temperature alters reproductive life history patterns in <i>Batrachochytrium dendrobatidis</i> , a lethal pathogen associated with the global loss of amphibians. Ecology and Evolution, 2012, 2, 2241-2249.	0.8	79
60	Ontogenetic shifts in a prey's chemical defences influence feeding responses of a snake predator. Oecologia, 2012, 169, 965-973.	0.9	22
61	Feeding by omnivores increases food available to consumers. Oikos, 2012, 121, 313-320.	1.2	17
62	Prevalence of Batrachochytrium dendrobatidis infection is extremely low in direct-developing Australian microhylids. Diseases of Aquatic Organisms, 2012, 100, 191-200.	0.5	10
63	Bleak future for amphibians. Nature, 2011, 480, 461-462.	13.7	15
64	Short-Term Exposure to Warm Microhabitats Could Explain Amphibian Persistence with Batrachochytrium dendrobatidis. PLoS ONE, 2011, 6, e26215.	1.1	44
65	Environmental Refuge from Disease-Driven Amphibian Extinction. Conservation Biology, 2011, 25, 956-964.	2.4	142
66	Why be a cannibal? The benefits to cane toad, Rhinella marina [=Bufo marinus], tadpoles of consuming conspecific eggs. Animal Behaviour, 2011, 82, 775-782.	0.8	40
67	Adaptation or preadaptation: why are keelback snakes (Tropidonophis mairii) less vulnerable to invasive cane toads (Bufo marinus) than are other Australian snakes?. Evolutionary Ecology, 2011, 25, 13-24.	0.5	34
68	Behavioural responses of carnivorous marsupials (<i>Planigale maculata</i>) to toxic invasive cane toads (<i>Bufo marinus</i>). Austral Ecology, 2010, 35, 560-567.	0.7	23
69	Locomotor performance in an invasive species: cane toads from the invasion front have greater endurance, but not speed, compared to conspecifics from a long-colonised area. Oecologia, 2010, 162, 343-348.	0.9	125
70	Something different for dinner? Responses of a native Australian predator (the keelback snake) to an invasive prey species (the cane toad). Biological Invasions, 2010, 12, 1045-1051.	1.2	26
71	Adaptations of skin peptide defences and possible response to the amphibian chytrid fungus in populations of Australian greenâ€eyed treefrogs, <i>Litoria genimaculata</i> . Diversity and Distributions, 2010, 16, 703-712.	1.9	27
72	Tropical reptiles in pine forests: Assemblage responses to plantations and plantation management by burning. Forest Ecology and Management, 2010, 259, 916-925.	1.4	20

#	Article	IF	CITATIONS
73	Declines and the Global Status of Amphibians. , 2010, , 13-45.		25
74	Pathogenesis of Chytridiomycosis, a Cause of Catastrophic Amphibian Declines. Science, 2009, 326, 582-585.	6.0	530
75	Addition of antifungal skin bacteria to salamanders ameliorates the effects of chytridiomycosis. Diseases of Aquatic Organisms, 2009, 83, 11-16.	0.5	138
76	Comparisons through time and space suggest rapid evolution of dispersal behaviour in an invasive species. Wildlife Research, 2009, 36, 23.	0.7	127
77	Impact of the invasive cane toad (Bufo marinus) on an Australian frog (Opisthodon ornatus) depends on minor variation in reproductive timing. Oecologia, 2009, 158, 625-632.	0.9	32
78	The Value of Well-Designed Experiments in Studying Diseases with Special Reference to Amphibians. EcoHealth, 2009, 6, 373-377.	0.9	7
79	Shredder–tadpole facilitation of leaf litter decomposition in a tropical stream. Freshwater Biology, 2009, 54, 2573-2580.	1.2	25
80	Chemical discrimination among predators by lizards: Responses of three skink species to the odours of high―and lowâ€ŧhreat varanid predators. Austral Ecology, 2009, 34, 50-54.	0.7	29
81	Distribution models for the amphibian chytrid <i>Batrachochytrium dendrobatidis</i> in Costa Rica: proposing climatic refuges as a conservation tool. Diversity and Distributions, 2009, 15, 401-408.	1.9	144
82	LIFE-HISTORY TRADE-OFFS INFLUENCE DISEASE IN CHANGING CLIMATES: STRATEGIES OF AN AMPHIBIAN PATHOGEN. Ecology, 2008, 89, 1627-1639.	1.5	206
83	Self-made shelters protect spiders from predation. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 14903-14907.	3.3	37
84	Sodium hypochlorite denatures the DNA of the amphibian chytrid fungus Batrachochytrium dendrobatidis. Diseases of Aquatic Organisms, 2008, 80, 63-67.	0.5	10
85	Infection intensity and sampling locality affect <i>Batrachochytrium dendrobatidis</i> distribution among body regions on green-eyed tree frogs <i>Litoria genimaculata</i> . Diseases of Aquatic Organisms, 2008, 81, 177-188.	0.5	16
86	Techniques for tracking amphibians: The effects of tag attachment, and harmonic direction finding versus radio telemetry. Amphibia - Reptilia, 2007, 28, 367-376.	0.1	46
87	Behaviour of Australian rainforest stream frogs may affect the transmission of chytridiomycosis. Diseases of Aquatic Organisms, 2007, 77, 1-9.	0.5	116
88	Acoustic attractants enhance trapping success for cane toads. Wildlife Research, 2007, 34, 366.	0.7	22
89	Movement patterns and habitat use of rainforest stream frogs in northern Queensland, Australia: implications for extinction vulnerability. Wildlife Research, 2007, 34, 371.	0.7	32
90	Global warming and amphibian losses. Nature, 2007, 447, E3-E4.	13.7	95

#	Article	IF	CITATIONS
91	Resistance to chytridiomycosis varies among amphibian species and is correlated with skin peptide defenses. Animal Conservation, 2007, 10, 409-417.	1.5	250
92	Innate immune defenses of amphibian skin: antimicrobial peptides and more. Animal Conservation, 2007, 10, 425-428.	1.5	69
93	Experimental Infection and Repeat Survey Data Indicate the Amphibian Chytrid Batrachochytrium dendrobatidis May Not Occur on Freshwater Crustaceans in Northern Queensland, Australia. EcoHealth, 2007, 4, 31-36.	0.9	7
94	Survey for the amphibian chytrid Batrachochytrium dendrobatidis in Hong Kong in native amphibians and in the international amphibian trade. Diseases of Aquatic Organisms, 2007, 78, 87-95.	0.5	37
95	Retreat sites of rain forest stream frogs are not a reservoir for Batrachochytrium dendrobatidis in northern Queensland, Australia. Diseases of Aquatic Organisms, 2007, 74, 7-12.	0.5	11
96	Niche breadth and geographical range: ecological compensation for geographical rarity in rainforest frogs. Biology Letters, 2006, 2, 532-535.	1.0	44
97	Confronting Amphibian Declines and Extinctions. Science, 2006, 313, 48-48.	6.0	234
98	From The Cover: Emerging infectious disease and the loss of biodiversity in a Neotropical amphibian community. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 3165-3170.	3.3	996
99	The Amphibian Chytrid Batrachochytrium dendrobatidis Occurs on Freshwater Shrimp in Rain Forest Streams in Northern Queensland, Australia. EcoHealth, 2006, 3, 49-52.	0.9	8
100	Experimental Exposures of Boreal Toads (Bufo boreas) to a Pathogenic Chytrid Fungus (Batrachochytrium dendrobatidis). EcoHealth, 2006, 3, 5-21.	0.9	160
101	Population trends associated with skin peptide defenses against chytridiomycosis in Australian frogs. Oecologia, 2006, 146, 531-540.	0.9	120
102	Multiple mate choice criteria and the importance of age for male mating success in the microhylid frog, Cophixalus ornatus. Behavioral Ecology and Sociobiology, 2006, 59, 786-795.	0.6	48
103	The Novel and Endemic Pathogen Hypotheses: Competing Explanations for the Origin of Emerging Infectious Diseases of Wildlife. Conservation Biology, 2005, 19, 1441-1448.	2.4	208
104	Ecology of Chytridiomycosis in Rainforest Stream Frog Assemblages of Tropical Queensland. Conservation Biology, 2005, 19, 1449-1459.	2.4	212
105	No behavioural compensation for fitness costs of autotomy in a lizard. Austral Ecology, 2005, 30, 713-718.	0.7	11
106	Patterns and fitness consequences of intraclutch variation in egg provisioning in tropical Australian frogs. Oecologia, 2005, 146, 98-109.	0.9	44
107	The Function of Tail Displays in Male Rainbow Skinks (Carlia jarnoldae). Journal of Herpetology, 2005, 39, 325-328.	0.2	12
108	Structure and dynamics of a rainforest frog (Litoria genimaculata) population in northern Queensland. Australian Journal of Zoology, 2005, 53, 229.	0.6	34

#	Article	lF	CITATIONS
109	EFFECTS OF SEASON AND WEATHER ON CALLING IN THE AUSTRALIAN MICROHYLID FROGS AUSTROCHAPERINA ROBUSTA AND COPHIXALUS ORNATUS. Herpetologica, 2005, 61, 349-363.	0.2	25
110	Sensory and skeletal development and growth in relation to the duration of the embryonic and larval stages in damselfishes (Pomacentridae). Biological Journal of the Linnean Society, 2003, 80, 187-206.	0.7	33
111	The Ontogeny of Fluctuating Asymmetry. American Naturalist, 2003, 161, 931-947.	1.0	62
112	Emerging disease of amphibians cured by elevated body temperature. Diseases of Aquatic Organisms, 2003, 55, 65-67.	0.5	287
113	The Tail Wags the Frog: Harmonic Radar Transponders Affect Movement Behavior in Litoria lesueuri. Journal of Herpetology, 2002, 36, 711-715.	0.2	22
114	Nomadic movement in tropical toads. Oikos, 2002, 96, 492-506.	1.2	76
115	Shelter Microhabitats Determine Body Temperature and Dehydration Rates of a Terrestrial Amphibian (Bufo marinus). Journal of Herpetology, 2002, 36, 69-75.	0.2	121
116	Amphibian Declines and Environmental Change: Use of Remote-Sensing Data to Identify Environmental Correlates. Conservation Biology, 2001, 15, 903-913.	2.4	69
117	Global amphibian population declines. Nature, 2001, 412, 499-500.	13.7	142
118	Environmental and social factors influence chorusing behaviour in a tropical frog: examining various temporal and spatial scales. Behavioral Ecology and Sociobiology, 2000, 49, 79-87.	0.6	78
119	Can length frequency analysis be used to determine squid growth? – An assessment of ELEFAN. ICES Journal of Marine Science, 2000, 57, 948-954.	1.2	32
120	Global Amphibian Declines: A Problem in Applied Ecology. Annual Review of Ecology, Evolution, and Systematics, 1999, 30, 133-165.	6.7	800
121	Movement and Microhabitat Use of a Terrestrial Amphibian (Bufo marinus) on a Tropical Island: Seasonal Variation and Environmental Correlates. Journal of Herpetology, 1999, 33, 208.	0.2	66
122	Evaluation of the toxicity of eggs, hatchlings and tadpoles of the introduced toad Bufo marinus (Anura: Bufonidae) to native Australian aquatic predators. Austral Ecology, 1998, 23, 129-137.	0.7	80
123	Lack of Evidence for Epidemic Disease as an Agent in the Catastrophic Decline of Australian Rain Forest Frogs. Conservation Biology, 1997, 11, 1026-1029.	2.4	20
124	Desiccation and Shelter-Site Use in a Tropical Amphibian: Comparing Toads with Physical Models. Functional Ecology, 1996, 10, 193.	1.7	112
125	Population dynamics of Turbonilla sp. (Pyramidellidae, Opisthobranchia), an ectoparasite of giant clams in mariculture. Journal of Experimental Marine Biology and Ecology, 1994, 183, 91-111.	0.7	8
126	Reproductive parameters of the grey goshawk <i>(Accipiter novaehollandiae)</i> and brown goshawk <i>(Accipiter fasciatus)</i> at Abergowrie, northern Queensland, Australia. Journal of Zoology, 1994, 232, 347-363.	0.8	9

#	Article	IF	CITATIONS
127	Declines in populations of Australia's endemic tropical rainforest frogs. Pacific Conservation Biology, 1994, 1, 66.	0.5	127
128	Morphometric comparison of two sympatric goshawks from the Australian wet tropics. Journal of Zoology, 1994, 232, 525-538.	0.8	6
129	Growth, survival and activity patterns of recently metamorphosed Bufo marinus. Wildlife Research, 1993, 20, 1.	0.7	42
130	Reproductive Biology of Four Species of Tropical Australian Lizards and Comments on the Factors Regulating Lizard Reproductive Cycles. Journal of Herpetology, 1993, 27, 400.	0.2	21
131	Do Cephalopods and Larvae of Other Taxa Grow Asymptotically?. American Naturalist, 1993, 141, 717-728.	1.0	58
132	Host selection and distribution of Hypermastus placentae (Eulimidae), and ectoparasitic gastropod on the sand dollar Arachnoides placenta (Echinoidea). Marine and Freshwater Research, 1993, 44, 835.	0.7	8
133	Nest Construction by an Australian Rainforest Frog of the Litoria lesueuri Complex (Anura: Hylidae). Copeia, 1992, 1992, 1120.	1.4	6
134	Population dynamics of an ectoparasitic gastropod, Hypermastus sp. (Eulimidae), on the sand dollar, Arachnoides placenta (Echinoidea). Marine and Freshwater Research, 1991, 42, 69.	0.7	10
135	Variation in Predator Phenology Affects Predator Performance and Prey Community Composition. Ecology, 1989, 70, 206-219.	1.5	72
136	Effects of Parentage and Competitor Phenology on the Growth of Larval Hyla Chrysoscelis. Oikos, 1989, 54, 325.	1.2	9
137	Effects of Larval Growth History on Anuran Metamorphosis. American Naturalist, 1988, 131, 91-106.	1.0	290
138	Effects of parentage on competitive ability and vulnerability to predation in Hyla chrysoscelis tadpoles. Oecologia, 1986, 68, 199-204.	0.9	12
139	Priority Effects in Experimental Pond Communities: Responses of Hyla to Bufo and Rana. Ecology, 1985, 66, 1106-1114.	1.5	168
140	Priority Effects in Experimental Pond Communities: Competition between Bufo and Rana. Ecology, 1985, 66, 1097-1105.	1.5	239