
SoÅ^a LegartovÃ;

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3837116/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Highest Density of Phosphorylated Histone H1 Appeared in Prophase and Prometaphase in Parallel with Reduced H3K9me3, and HDAC1 Depletion Increased H1.2/H1.3 and H1.4 Serine 38 Phosphorylation. Life, 2022, 12, 798.	2.4	2
2	The SC-35 Splicing Factor Interacts with RNA Pol II and A-Type Lamin Depletion Weakens This Interaction. Cells, 2021, 10, 297.	4.1	2
3	A device for investigation of natural cell mobility and deformability. Electrophoresis, 2020, 41, 1238-1244.	2.4	3
4	N6-Adenosine Methylation in RNA and a Reduced m3G/TMG Level in Non-Coding RNAs Appear at Microirradiation-Induced DNA Lesions. Cells, 2020, 9, 360.	4.1	36
5	Cell differentiation and aging accompanied by depletion of the ACE2 protein. Aging, 2020, 12, 22495-22508.	3.1	11
6	DNA Damage Changes Distribution Pattern and Levels of HP1 Protein Isoforms in the Nucleolus and Increases Phosphorylation of HP1Î ² -Ser88. Cells, 2019, 8, 1097.	4.1	10
7	HDAC1 and HDAC3 underlie dynamic H3K9 acetylation during embryonic neurogenesis and in schizophrenia″ike animals. Journal of Cellular Physiology, 2018, 233, 530-548.	4.1	61
8	Depletion of Aâ€ŧype lamins and <i>Lap2α</i> reduces 53BP1 accumulation at UVâ€induced DNA lesions and <i>Lap2α</i> protein is responsible for compactness of irradiated chromatin. Journal of Cellular Biochemistry, 2018, 119, 8146-8162.	2.6	10
9	H3K9me3 and H4K20me3 represent the epigenetic landscape for 53BP1 binding to DNA lesions. Aging, 2018, 10, 2585-2605.	3.1	27
10	PCNA is recruited to irradiated chromatin in late S-phase and is most pronounced in G2 phase of the cell cycle. Protoplasma, 2017, 254, 2035-2043.	2.1	15
11	Function of heterochromatin protein 1 during DNA repair. Protoplasma, 2017, 254, 1233-1240.	2.1	19
12	Mutations in the TP53 gene affected recruitment of 53BP1 protein to DNA lesions, but level of 53BP1 was stable after Î ³ -irradiation that depleted MDC1 protein in specific TP53 mutants. Histochemistry and Cell Biology, 2017, 148, 239-255.	1.7	13
13	An Endogenously Tagged Fluorescent Fusion Protein Library in Mouse Embryonic Stem Cells. Stem Cell Reports, 2017, 9, 1304-1314.	4.8	19
14	Advanced Confocal Microscopy Techniques to Study Protein-protein Interactions and Kinetics at DNA Lesions. Journal of Visualized Experiments, 2017, , .	0.3	7
15	Localized Movement and Levels of 53BP1 Protein Are Changed by γâ€irradiation in PML Deficient Cells. Journal of Cellular Biochemistry, 2016, 117, 2583-2596.	2.6	7
16	Advanced Image Acquisition and Analytical Techniques for Studies of Living Cells and Tissue Sections. Microscopy and Microanalysis, 2016, 22, 326-341.	0.4	4
17	The level and distribution pattern of HP1β in the embryonic brain correspond to those of H3K9me1/me2 but not of H3K9me3. Histochemistry and Cell Biology, 2016, 145, 447-461.	1.7	7
18	Distinct kinetics of DNA repair protein accumulation at DNA lesions and cell cycleâ€dependent formation of γH2AX†and NBS1â€positive repair foci. Biology of the Cell, 2015, 107, 440-454.	2.0	24

SoÅ^a LegartovÃi

#	Article	IF	CITATIONS
19	Localized movement and morphology of UBF1-positive nucleolar regions are changed by Î ³ -irradiation in G2 phase of the cell cycle. Nucleus, 2015, 6, 301-313.	2.2	9
20	Postâ€Translational Modifications of Histones in Human Sperm. Journal of Cellular Biochemistry, 2015, 116, 2195-2209.	2.6	27
21	Coilin is rapidly recruited to UVA-induced DNA lesions and Î ³ -radiation affects localized movement of Cajal bodies. Nucleus, 2014, 5, 269-277.	2.2	22
22	Cell differentiation along multiple pathways accompanied by changes in histone acetylation status. Biochemistry and Cell Biology, 2014, 92, 85-93.	2.0	9
23	HP1β-dependent recruitment of UBF1 to irradiated chromatin occurs simultaneously with CPDs. Epigenetics and Chromatin, 2014, 7, 39.	3.9	18
24	Nuclear Structures Surrounding Internal Lamin Invaginations. Journal of Cellular Biochemistry, 2014, 115, 476-487.	2.6	25
25	Basic nuclear processes affected by histone acetyltransferases and histone deacetylase inhibitors. Epigenomics, 2013, 5, 379-396.	2.1	28
26	Epigenetic aspects of HP1 exchange kinetics in apoptotic chromatin. Biochimie, 2013, 95, 167-179.	2.6	10
27	DNA-damage response in chromatin of ribosomal genes and the surrounding genome. Gene, 2013, 522, 156-167.	2.2	21
28	Acetylationâ€dependent nuclear arrangement and recruitment of BMI1 protein to UVâ€damaged chromatin. Journal of Cellular Physiology, 2012, 227, 1838-1850.	4.1	48
29	Effects of epigenetic-based anti-cancer drugs in leukaemia and multiple myeloma cells. Cell Biology International, 2011, 35, 1195-1203.	3.0	8
30	Recruitment of Oct4 Protein to UV-Damaged Chromatin in Embryonic Stem Cells. PLoS ONE, 2011, 6, e27281.	2.5	45
31	Chromocentre integrity and epigenetic marks. Journal of Structural Biology, 2010, 169, 124-133.	2.8	16
32	Nuclear organization of PML bodies in leukaemic and multiple myeloma cells. Leukemia Research, 2008, 32, 1866-1877.	0.8	19