
Mingchao Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3837057/publications.pdf Version: 2024-02-01

MINCCHAOLI

#	Article	lF	CITATIONS
1	A hybrid approach for interval prediction of concrete dam displacements under uncertain conditions. Engineering With Computers, 2023, 39, 1285-1303.	3.5	7
2	A new interval prediction method for displacement behavior of concrete dams based on gradient boosted quantile regression. Structural Control and Health Monitoring, 2022, 29, e2859.	1.9	11
3	A new measuring method of dredging concentration based on hybrid ensemble deep learning technique. Measurement: Journal of the International Measurement Confederation, 2022, 188, 110423.	2.5	5
4	Wind-resistance performance investigation of 360° vertical seam-locked roof system reinforced by sliding support and sandwich panel. Journal of Building Engineering, 2022, 45, 103689.	1.6	2
5	Global Time Optimization Method for Dredging Construction Cycles of Trailing Suction Hopper Dredger Based on Grey System Model. Journal of Construction Engineering and Management - ASCE, 2022, 148, .	2.0	2
6	Seismic Analysis of Gravity Dam–Layered Foundation System Subjected to Earthquakes with Arbitrary Incident Angles. International Journal of Geomechanics, 2022, 22, .	1.3	9
7	DRLSTM: A dual-stage deep learning approach driven by raw monitoring data for dam displacement prediction. Advanced Engineering Informatics, 2022, 51, 101510.	4.0	24
8	A multiple-point monitoring model for concrete dam displacements based on correlated multiple-output support vector regression. Structural Health Monitoring, 2022, 21, 2768-2785.	4.3	8
9	Hybrid intelligence approach for performance estimation of rectangular CFST columns under different loading conditions. Structures, 2022, 39, 720-738.	1.7	2
10	Multi-sensor real-time monitoring of dam behavior using self-adaptive online sequential learning. Automation in Construction, 2022, 140, 104365.	4.8	21
11	Deep learning–based stochastic modelling and uncertainty analysis of fault networks. Bulletin of Engineering Geology and the Environment, 2022, 81, .	1.6	5
12	Human Error Analysis for Hydraulic Engineering: Comprehensive System to Reveal Accident Evolution Process with Text Knowledge. Journal of Construction Engineering and Management - ASCE, 2022, 148,	2.0	5
13	Developing a Common Library of Prefabricated Structure Components through Graphic Media Mapping to Improve Design Efficiency. Journal of Construction Engineering and Management - ASCE, 2021, 147, .	2.0	13
14	Productivity analysis of trailing suction hopper dredgers using stacking strategy. Automation in Construction, 2021, 122, 103470.	4.8	11
15	Productivity estimation of cutter suction dredger operation through data mining and learning from real-time big data. Engineering, Construction and Architectural Management, 2021, 28, 2023-2041.	1.8	6
16	A robust prediction model for displacement of concrete dams subjected to irregular waterâ€level fluctuations. Computer-Aided Civil and Infrastructure Engineering, 2021, 36, 577-601.	6.3	35
17	Estimation of seismic wave incident angle using vibration response data and stacking ensemble algorithm. Computers and Geotechnics, 2021, 137, 104255.	2.3	15
18	A novel deep learning prediction model for concrete dam displacements using interpretable mixed attention mechanism. Advanced Engineering Informatics, 2021, 50, 101407.	4.0	60

Μινςсήλο Li

#	Article	IF	CITATIONS
19	Digital twin-driven virtual sensor approach for safe construction operations of trailing suction hopper dredger. Automation in Construction, 2021, 132, 103961.	4.8	23
20	An integrated method for evaluating and predicting long-term operation safety of concrete dams considering lag effect. Engineering With Computers, 2021, 37, 2505-2519.	3.5	8
21	Copula-based simulating and analyzing methods of rock mass fractures. Computers and Geotechnics, 2020, 127, 103779.	2.3	12
22	An optimized combination prediction model for concrete dam deformation considering quantitative evaluation and hysteresis correction. Advanced Engineering Informatics, 2020, 46, 101154.	4.0	51
23	Nonlinear Dynamic Response of a CC-RCC Combined Dam Structure under Oblique Incidence of Near-Fault Ground Motions. Applied Sciences (Switzerland), 2020, 10, 885.	1.3	10
24	Deformation coordination analysis of CC-RCC combined dam structures under dynamic loads. Water Science and Engineering, 2020, 13, 162-170.	1.4	4
25	Onset detection of ultrasonic signals for the testing of concrete foundation piles by coupled continuous wavelet transform and machine learning algorithms. Advanced Engineering Informatics, 2020, 43, 101034.	4.0	27
26	Thermal deformation coordination analysis of CC-RCC combined dam structure during construction and operation periods. Engineering Structures, 2020, 213, 110587.	2.6	18
27	Experimental study on electro-thermal and compaction properties of electrically conductive roller-compacted concrete overwintering layer in high RCC dams. Construction and Building Materials, 2020, 263, 120248.	3.2	15
28	An Automated Method to Generate and Evaluate Geochemical Tectonic Discrimination Diagrams Based on Topological Theory. Minerals (Basel, Switzerland), 2020, 10, 62.	0.8	3
29	Prediction of Rock Compressive Strength Using Machine Learning Algorithms Based on Spectrum Analysis of Geological Hammer. Geotechnical and Geological Engineering, 2019, 37, 475-489.	0.8	26
30	Tectonic discrimination of olivine in basalt using data mining techniques based on major elements: a comparative study from multiple perspectives. Big Earth Data, 2019, 3, 8-25.	2.0	15
31	Prediction of Ultimate Axial Capacity of Square Concrete-Filled Steel Tubular Short Columns Using a Hybrid Intelligent Algorithm. Applied Sciences (Switzerland), 2019, 9, 2802.	1.3	45
32	Basalt Tectonic Discrimination Using Combined Machine Learning Approach. Minerals (Basel,) Tj ETQq0 0 0 rgBT	/Overlock	10 Tf 50 222
33	Intelligent Identification for Rock-Mineral Microscopic Images Using Ensemble Machine Learning Algorithms. Sensors, 2019, 19, 3914.	2.1	50
34	Measuring rock surface strength based on spectrograms with deep convolutional networks. Computers and Geosciences, 2019, 133, 104312.	2.0	16
35	A Deep Learning Based Method for the Non-Destructive Measuring of Rock Strength through Hammering Sound. Applied Sciences (Switzerland), 2019, 9, 3484.	1.3	9

36An Enhanced Rock Mineral Recognition Method Integrating a Deep Learning Model and Clustering
Algorithm. Minerals (Basel, Switzerland), 2019, 9, 516.0.835

Μινςснао Li

#	Article	IF	CITATIONS
37	A Mathematical Model Based on Bayesian Theory and Gaussian Copula for the Discrimination of Gabbroic Rocks from Three Tectonic Settings. Journal of Geology, 2019, 127, 611-626.	0.7	4
38	A new distributed time series evolution prediction model for dam deformation based on constituent elements. Advanced Engineering Informatics, 2019, 39, 41-52.	4.0	61
39	Data mining approach to construction productivity prediction for cutter suction dredgers. Automation in Construction, 2019, 105, 102833.	4.8	56
40	Multiple mechanical properties prediction of hydraulic concrete in the form of combined damming by experimental data mining. Construction and Building Materials, 2019, 207, 661-671.	3.2	29
41	Multi-Pattern Data Mining and Recognition of Primary Electric Appliances from Single Non-Intrusive Load Monitoring Data. Energies, 2019, 12, 992.	1.6	10
42	Discriminating among tectonic settings of spinel based on multiple machine learning algorithms. Big Earth Data, 2019, 3, 67-82.	2.0	11
43	Isogeometric shape optimization of high RCC gravity dams with functionally graded partition structure considering hydraulic fracturing. Engineering Structures, 2019, 179, 341-352.	2.6	18
44	An Improved Computing Method for 3D Mechanical Connectivity Rates Based on a Polyhedral Simulation Model of Discrete Fracture Network in Rock Masses. Rock Mechanics and Rock Engineering, 2018, 51, 1789-1800.	2.6	15
45	A trace map comparison algorithm for the discrete fracture network models of rock masses. Computers and Geosciences, 2018, 115, 31-41.	2.0	10
46	Automated Classification Analysis of Geological Structures Based on Images Data and Deep Learning Model. Applied Sciences (Switzerland), 2018, 8, 2493.	1.3	28
47	Novel Method of Construction-Efficiency Evaluation of Cutter Suction Dredger Based on Real-Time Monitoring Data. Journal of Waterway, Port, Coastal and Ocean Engineering, 2018, 144, 05018007.	0.5	15
48	An enhanced ISODATA algorithm for recognizing multiple electric appliances from the aggregated power consumption dataset. Energy and Buildings, 2017, 140, 305-316.	3.1	26
49	Mechanical properties investigation of high-fluidity impermeable and anti-cracking concrete in high roller-compacted concrete dams. Construction and Building Materials, 2017, 156, 861-870.	3.2	12
50	Refined modeling and identification of complex rock blocks and block-groups based on an enhanced DFN model. Tunnelling and Underground Space Technology, 2017, 62, 23-34.	3.0	20
51	3D identification and stability analysis of key surface blocks of rock slope. Transactions of Tianjin University, 2016, 22, 317-323.	3.3	7
52	Seepage and stress analysis of anti-seepage structures constructed with different concrete materials in an RCC gravity dam. Water Science and Engineering, 2015, 8, 326-334.	1.4	32
53	A multidimensional information model for managing construction information. Journal of Industrial and Management Optimization, 2015, 11, 1285-1300.	0.8	11
54	3D Multiscale Integrated Modeling Approach of Complex Rock Mass Structures. Mathematical Problems in Engineering, 2014, 2014, 1-6.	0.6	0

Μινςςμαό Li

#	Article	IF	CITATIONS
55	Alternative 3D modeling approaches based on complex multi-source geological data interpretation. Transactions of Tianjin University, 2014, 20, 7-14.	3.3	1
56	Analyzing heating equipment's operations based on measured data. Energy and Buildings, 2014, 82, 47-56.	3.1	17
57	Method for Identifying and Analyzing 3D Surface Blocks of Rock Mass Structures. Journal of Geotechnical and Geoenvironmental Engineering - ASCE, 2013, 139, 1756-1764.	1.5	6
58	Automatic generation method of geological cross-sections in dredging engineering based on 3D solid NURBS models. Transactions of Tianjin University, 2012, 18, 393-400.	3.3	5
59	Numerical calculation of channel dredging volume using 3D digital stratum model. Transactions of Tianjin University, 2012, 18, 90-96.	3.3	1
60	Dam break threshold value and risk probability assessment for an earth dam. Natural Hazards, 2011, 59, 129-147.	1.6	30
61	Theory and application of loss of life risk analysis for dam break. Transactions of Tianjin University, 2010, 16, 383-387.	3.3	5
62	Theory on real-time control of construction quality and progress and its application to high arc dam. Science China Technological Sciences, 2010, 53, 2611-2618.	2.0	15
63	Multi-Objective Optimization Method for Construction site layout of Interbasin Water Diversion Project. , 2009, , .		0
64	Dynamic simulation and optimization approach to construction diversion of hydraulic and hydroelectric projects. Science in China Series D: Earth Sciences, 2009, 52, 1990-1998.	0.9	1
65	NURBS reconstruction of digital terrain for hydropower engineering based on TIN model. Progress in Natural Science: Materials International, 2008, 18, 1409-1415.	1.8	17
66	3D Evaluation and Analysis of Landslide Instability Mechanism of Reservoir Banks: A Case Study in the Three Gorges Reservoir. , 2008, , .		2
67	3D integrated modeling approach to geo-engineering objects of hydraulic and hydroelectric projects. Science in China Series D: Earth Sciences, 2007, 50, 329-342.	0.9	16
68	Enhanced NURBS modeling and visualization for large 3D geoengineering applications: An example from the Jinping first-level hydropower engineering project, China. Computers and Geosciences, 2006, 32, 1270-1282.	2.0	50
69	Discussion of "lSO 14000 and the Construction Industry: Survey in China,―by S. X. Zeng, C. M. Tam, Z. M. Deng, and Vivian W. Y. Tam. Journal of Management in Engineering - ASCE, 2005, 21, 148-149.	2.6	1
70	GIS-based 3D dynamic visualization of simulated complex construction process. , 2004, , .		1
71	NURBS-Based 3D Graphical Modeling and Visualization of Geological Structures. , 0, , .		3