
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3836908/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Characterization of two halophilic adenylate cyclases from Thermobifida halotolerans and Haloactinopolyspora alba. Chinese Journal of Chemical Engineering, 2023, 53, 56-62.	1.7	1
2	Identification of a sensor histidine kinase (BfcK) controlling biofilm formation in Clostridium acetobutylicum. Chinese Journal of Chemical Engineering, 2022, 46, 84-93.	1.7	1
3	Lignin demethylation for modifying halloysite nanotubes towards robust phenolic foams with excellent thermal insulation and flame retardancy. Journal of Applied Polymer Science, 2022, 139, .	1.3	11
4	Continuous Production of Human Epidermal Growth Factor Using Escherichia coli Biofilm. Frontiers in Microbiology, 2022, 13, 855059.	1.5	0
5	Hydrates of adenosine 3′,5′-cyclic monophosphate sodium and their transformation. CrystEngComm, 2021, 23, 174-184.	1.3	2
6	Light Signaling Regulates Aspergillus niger Biofilm Formation by Affecting Melanin and Extracellular Polysaccharide Biosynthesis. MBio, 2021, 12, .	1.8	15
7	Effect of quorum-sensing molecule 2-phenylethanol and ARO genes on Saccharomyces cerevisiae biofilm. Applied Microbiology and Biotechnology, 2021, 105, 3635-3648.	1.7	23
8	Nonsterile <scp>l</scp> -Lysine Fermentation Using Engineered Phosphite-Grown <i>Corynebacterium glutamicum</i> . ACS Omega, 2021, 6, 10160-10167.	1.6	11
9	Clostridium acetobutylicum Biofilm: Advances in Understanding the Basis. Frontiers in Bioengineering and Biotechnology, 2021, 9, 658568.	2.0	5
10	A Procedure to Design One-Pot Multi-enzyme System for Industrial CDP-Choline Production. Applied Biochemistry and Biotechnology, 2021, 193, 2769-2780.	1.4	2
11	Efficient preparation of phytase from genetically modified Pichia pastoris in immobilised fermentation biofilms adsorbed on surface-modified cotton fibres. Process Biochemistry, 2021, 111, 69-69.	1.8	7
12	pH-Neutralization, Redox-Balanced Process with Coupled Formate Dehydrogenase and Glucose Dehydrogenase Supports Efficient Xylitol Production in Pure Water. Journal of Agricultural and Food Chemistry, 2020, 68, 235-241.	2.4	3
13	Biofilm-based fermentation: a novel immobilisation strategy for Saccharomyces cerevisiae cell cycle progression during ethanol production. Applied Microbiology and Biotechnology, 2020, 104, 7495-7505.	1.7	14
14	Biofilm-Related, Time-Series Transcriptome and Genome Sequencing in Xylanase-Producing Aspergillus niger SJ1. ACS Omega, 2020, 5, 19737-19746.	1.6	9
15	Efficient Biofilm-Based Fermentation Strategies by eDNA Formation for <scp>l</scp> -Proline Production with <i>Corynebacterium glutamicum</i> . ACS Omega, 2020, 5, 33314-33322.	1.6	11
16	Preparation of a Copper Polyphosphate Kinase Hybrid Nanoflower and Its Application in ADP Regeneration from AMP. ACS Omega, 2020, 5, 9991-9998.	1.6	20
17	Effects of Spo0A on Clostridium acetobutylicum with an emphasis on biofilm formation. World Journal of Microbiology and Biotechnology, 2020, 36, 80.	1.7	5
18	Isolation and characterization of plant growth-promoting rhizobacteria and their effects on the growth of Medicago sativa L. under salinity conditions. Antonie Van Leeuwenhoek, 2020, 113, 1263-1278.	0.7	34

#	Article	IF	CITATIONS
19	Calcineurin signaling pathway influences Aspergillus niger biofilm formation by affecting hydrophobicity and cell wall integrity. Biotechnology for Biofuels, 2020, 13, 54.	6.2	12
20	Production of Butanol Directly from Hemicellulose through Secretory Expression of a Xylanase in <i>Clostridium acetobutylicum</i> . Energy & Fuels, 2020, 34, 3376-3382.	2.5	8
21	Biofilm Polysaccharide Display Platform: A Natural, Renewable, and Biocompatible Material for Improved Lipase Performance. Journal of Agricultural and Food Chemistry, 2020, 68, 1373-1381.	2.4	8
22	Knockout of pde gene in Arthrobacter sp. CGMCC 3584 and transcriptomic analysis of its effects on cAMP production. Bioprocess and Biosystems Engineering, 2020, 43, 839-850.	1.7	5
23	Efficient Biofilm-Based Fermentation Strategies for L-Threonine Production by Escherichia coli. Frontiers in Microbiology, 2019, 10, 1773.	1.5	22
24	Immobilization of a polyphosphate kinase 2 by coordinative self-assembly of his-tagged units with metal-organic frameworks and its application in ATP regeneration from AMP. Colloids and Surfaces B: Biointerfaces, 2019, 181, 261-269.	2.5	16
25	Competitive adsorption of vanillin and syringaldehyde on a macro-mesopore polymeric resin: modeling. Bioprocess and Biosystems Engineering, 2019, 42, 1435-1445.	1.7	5
26	Surface functionalization of graphene oxide by amino acids for Thermomyces lanuginosus lipase adsorption. Journal of Colloid and Interface Science, 2019, 546, 211-220.	5.0	38
27	Nitric oxide increases biofilm formation in Saccharomyces cerevisiae by activating the transcriptional factor Mac1p and thereby regulating the transmembrane protein Ctr1. Biotechnology for Biofuels, 2019, 12, 30.	6.2	18
28	Computation-aided rational design of a halophilic choline kinase for cytidine diphosphate choline production in high-salt condition. Journal of Biotechnology, 2019, 290, 59-66.	1.9	9
29	Nano-Biocatalysts of Cyt <i>c</i> @ZIF-8/GO Composites with High Recyclability via a de Novo Approach. ACS Applied Materials & Interfaces, 2018, 10, 16066-16076.	4.0	74
30	Affinity induced immobilization of adenylate cyclase from the crude cell lysate for ATP conversion. Colloids and Surfaces B: Biointerfaces, 2018, 164, 155-164.	2.5	16
31	Rational Design of an Efficient Halotolerant Enzymatic System for In Vitro Oneâ€Pot Synthesis of Cytidine Diphosphate Choline. Biotechnology Journal, 2018, 13, e1700577.	1.8	4
32	Comparative transcriptomic and proteomic analysis of Arthrobacter sp. CGMCC 3584 responding to dissolved oxygen for cAMP production. Scientific Reports, 2018, 8, 1246.	1.6	8
33	Towards acetone-uncoupled biofuels production in solventogenic Clostridium through reducing power conservation. Metabolic Engineering, 2018, 47, 102-112.	3.6	21
34	Continuous citric acid production in repeated-fed batch fermentation by Aspergillus niger immobilized on a new porous foam. Journal of Biotechnology, 2018, 276-277, 1-9.	1.9	42
35	Clostridium acetobutylicum grows vegetatively in a biofilm rich in heteropolysaccharides and cytoplasmic proteins. Biotechnology for Biofuels, 2018, 11, 315.	6.2	18
36	Efficient Xylitol Production from Cornstalk Hydrolysate Using Engineered <i>Escherichia coli</i> Whole Cells. Journal of Agricultural and Food Chemistry, 2018, 66, 13209-13216.	2.4	8

#	Article	IF	CITATIONS
37	Application of electrodialysis to extract 5′-ribonucleotides from hydrolysate: efficient decolorization and membrane fouling. RSC Advances, 2018, 8, 29115-29128.	1.7	7
38	Model-based design of an intermittent simulated moving bed process for recovering lactic acid from ternary mixture. Journal of Chromatography A, 2018, 1562, 47-58.	1.8	2
39	Transcriptome analysis of Clostridium beijerinckii adaptation mechanisms in response to ferulic acid. International Journal of Biochemistry and Cell Biology, 2017, 86, 14-21.	1.2	15
40	Immobilization of <i>Clostridium acetobutylicum</i> onto natural textiles and its fermentation properties. Microbial Biotechnology, 2017, 10, 502-512.	2.0	19
41	Recovery of lactic acid from the pretreated fermentation broth based on a novel hyper-cross-linked meso-micropore resin: Modeling. Bioresource Technology, 2017, 241, 593-602.	4.8	20
42	Combined ion exchange and adsorption equilibria of 5′-ribonucleotides on the strong acid cation exchange resin NH-1. Journal of Chemical Technology and Biotechnology, 2017, 92, 1678-1689.	1.6	5
43	Bio-butanol sorption performance on novel porous-carbon adsorbents from corncob prepared via hydrothermal carbonization and post-pyrolysis method. Scientific Reports, 2017, 7, 11753.	1.6	19
44	Novel one-pot ATP regeneration system based on three-enzyme cascade for industrial CTP production. Biotechnology Letters, 2017, 39, 1875-1881.	1.1	5
45	Efficient decolorization of citric acid fermentation broth using carbon materials prepared from phosphoric acid activation of hydrothermally treated corncob. RSC Advances, 2017, 7, 37112-37121.	1.7	22
46	Screening of promoters from Arthrobacter sp. CGMCC 3584 using a green fluorescent protein reporter system. World Journal of Microbiology and Biotechnology, 2017, 33, 208.	1.7	1
47	Efficient multi-enzyme-catalyzed CDP-choline production driven by an ATP donor module. Applied Microbiology and Biotechnology, 2017, 101, 1409-1417.	1.7	15
48	Comparative transcriptomic analysis of Clostridium acetobutylicum biofilm and planktonic cells. Journal of Biotechnology, 2016, 218, 1-12.	1.9	27
49	Engineering Clostridium beijerinckii with the Cbei_4693 gene knockout for enhanced ferulic acid tolerance. Journal of Biotechnology, 2016, 229, 53-57.	1.9	21
50	Enhanced production of butanol and acetoin by heterologous expression of an acetolactate decarboxylase in Clostridium acetobutylicum. Bioresource Technology, 2016, 216, 601-606.	4.8	14
51	Extracellular polymer substances and the heterogeneity of Clostridium acetobutylicum biofilm induced tolerance to acetic acid and butanol. RSC Advances, 2016, 6, 33695-33704.	1.7	22
52	Enhanced butanol production by increasing NADH and ATP levels in Clostridium beijerinckii NCIMB 8052 by insertional inactivation of Cbei_4110. Applied Microbiology and Biotechnology, 2016, 100, 4985-4996.	1.7	31
53	Production of liquid hydrocarbon fuels with acetoin and platform molecules derived from lignocellulose. Green Chemistry, 2016, 18, 2165-2174.	4.6	67
54	Involvement of glycolysis/gluconeogenesis and signaling regulatory pathways in Saccharomyces cerevisiae biofilms during fermentation. Frontiers in Microbiology, 2015, 6, 139.	1.5	36

#	Article	IF	CITATIONS
55	Simultaneous production of butanol and acetoin by metabolically engineered Clostridium acetobutylicum. Metabolic Engineering, 2015, 27, 107-114.	3.6	38
56	Economically enhanced succinic acid fermentation from cassava bagasse hydrolysate using Corynebacterium glutamicum immobilized in porous polyurethane filler. Bioresource Technology, 2014, 174, 190-197.	4.8	46
57	Biobutanol production in a Clostridium acetobutylicum biofilm reactor integrated with simultaneous product recovery by adsorption. Biotechnology for Biofuels, 2014, 7, 5.	6.2	74
58	Enhancement of n-butanol production by in situ butanol removal using permeating–heating–gas stripping in acetone–butanol–ethanol fermentation. Bioresource Technology, 2014, 164, 276-284.	4.8	53
59	Enhanced butanol production by modulation of electron flow in Clostridium acetobutylicum B3 immobilized by surface adsorption. Bioresource Technology, 2013, 129, 321-328.	4.8	62
60	Production of butanol from glucose and xylose with immobilized cells of Clostridium acetobutylicum. Biotechnology and Bioprocess Engineering, 2013, 18, 234-241.	1.4	67
61	Adaptation of Glycolysis and Growth to Acetate in Sporolactobacillus sp. Y2-8. Applied Biochemistry and Biotechnology, 2012, 168, 455-463.	1.4	2
62	Enhanced uridine 5′-monophosphate production by whole cell of Saccharomyces cerevisiae through rational redistribution of metabolic flux. Bioprocess and Biosystems Engineering, 2012, 35, 729-737.	1.7	2
63	Cell Cycle Progression Influences Biofilm Formation in Saccharomyces cerevisiae 1308. Microbiology Spectrum, 0, , .	1.2	2