Jung Hoon Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3836787/publications.pdf Version: 2024-02-01

Ιμής Ησον Υλής

#	Article	IF	CITATIONS
1	Electrochemical formation and dissolution of an iodine–halide coordination solid complex in a nano-confined space. Journal of Materials Chemistry A, 2021, 9, 17955-17966.	10.3	7
2	Indirect coal liquefaction by integrated entrained flow gasification and Rectisol/Fischer–Tropsch processes for producing automobile diesel substitutes. Energy, 2021, 219, 119597.	8.8	10
3	Effect of an Iodine Film on Charge-Transfer Resistance during the Electro-Oxidation of Iodide in Redox Flow Batteries. ACS Applied Materials & Interfaces, 2021, 13, 6385-6393.	8.0	19
4	NaTi2(PO4)3 nanoparticles embedded in double carbon networks as a negative electrode for an aqueous sodium-polyiodide flow battery. Electrochimica Acta, 2020, 361, 137075.	5.2	7
5	Dendrite-free Zn electrodeposition triggered by interatomic orbital hybridization of Zn and single vacancy carbon defects for aqueous Zn-based flow batteries. Energy and Environmental Science, 2020, 13, 2839-2848.	30.8	108
6	Influence of Metal Impurities or Additives in the Electrolyte of a Vanadium Redox Flow Battery. Journal of the Electrochemical Society, 2018, 165, A1263-A1268.	2.9	21
7	Electrocatalytic effect of NiO nanoparticles evenly distributed on a graphite felt electrode for vanadium redox flow batteries. Electrochimica Acta, 2018, 278, 226-235.	5.2	71
8	Estimation of State-of-Charge for Zinc-Bromine Flow Batteries by In Situ Raman Spectroscopy. Journal of the Electrochemical Society, 2017, 164, A754-A759.	2.9	20
9	A review of vanadium electrolytes for vanadium redox flow batteries. Renewable and Sustainable Energy Reviews, 2017, 69, 263-274.	16.4	336
10	Highly porous graphenated graphite felt electrodes with catalytic defects for high-performance vanadium redox flow batteries produced via NiO/Ni redox reactions. Carbon, 2016, 110, 17-26.	10.3	85
11	Capacity Decay Mitigation by Asymmetric Positive/Negative Electrolyte Volumes in Vanadium Redox Flow Batteries. ChemSusChem, 2016, 9, 3181-3187.	6.8	29
12	Critical rate of electrolyte circulation for preventing zinc dendrite formation in a zinc–bromine redox flow battery. Journal of Power Sources, 2016, 325, 446-452.	7.8	58
13	Highly accurate apparatus for electrochemical characterization of the felt electrodes used in redox flow batteries. Journal of Power Sources, 2016, 310, 137-144.	7.8	29
14	Effect of a surface active agent on performance of zinc/bromine redox flow batteries: Improvement in current efficiency and system stability. Journal of Power Sources, 2015, 275, 294-297.	7.8	63
15	Effect of inorganic additive sodium pyrophosphate tetrabasic on positive electrolytes for a vanadium redox flow battery. Electrochimica Acta, 2014, 121, 321-327.	5.2	43
16	A metal-free and all-organic redox flow battery with polythiophene as the electroactive species. Journal of Materials Chemistry A, 2014, 2, 19994-19998.	10.3	95
17	Continuous alcohol addition in vaporized form and its effect on bubble behavior in a bubble column. Chemical Engineering Research and Design, 2014, 92, 804-811.	5.6	7
18	Dual function of quaternary ammonium in Zn/Br redox flow battery: Capturing the bromine and lowering the charge transfer resistance. Electrochimica Acta, 2014, 127, 397-402.	5.2	99

Jung Hoon Yang

#	Article	IF	CITATIONS
19	The influence of compressed carbon felt electrodes on the performance of a vanadium redox flow battery. Electrochimica Acta, 2014, 116, 447-452.	5.2	102
20	Origin of regime transition to turbulent flow in bubble column: Orifice- and column-induced transitions. International Journal of Multiphase Flow, 2013, 50, 89-97.	3.4	22
21	Hydrodynamic effect of oxygenated byproduct during Fischer–Tropsch synthesis in slurry bubble column. Chemical Engineering and Processing: Process Intensification, 2013, 66, 27-35.	3.6	3
22	Interaction between partitioning porous plate and rising bubbles in a trayed bubble column. Chemical Engineering Research and Design, 2012, 90, 1457-1466.	5.6	18
23	Negative Effects of CO2 in the Feed Stream on the Catalytic Performance of Precipitated Iron-Based Catalysts for Fischer–Tropsch Synthesis. Catalysis Letters, 2012, 142, 452-459.	2.6	17
24	The Effect of Partitioning Porous Plate on Bubble Behavior and Gas Hold-up in a Bench Scale (0.36 m ×) Tj ETQo	10 0 0 rgB	[/Qverlock]

25	Catalytic process for decolorizing yellow plume. Korean Journal of Chemical Engineering, 2011, 28, 418-423.	2.7	3
26	Combined pre-reformer/reformer system utilizing monolith catalysts for hydrogen production. International Journal of Hydrogen Energy, 2011, 36, 8850-8856.	7.1	14
27	Highly effective cobalt catalyst for wax production in Fischer–Tropsch synthesis. Fuel, 2010, 89, 237-243.	6.4	38
28	Mass transfer limitations on fixed-bed reactor for Fischer–Tropsch synthesis. Fuel Processing Technology, 2010, 91, 285-289.	7.2	46
29	Investigation of Fischer–Tropsch synthesis performance and its intrinsic reaction behavior in a bench scale slurry bubble column reactor. Fuel Processing Technology, 2010, 91, 1839-1844.	7.2	9
30	Two regime transitions to pseudo-homogeneous and heterogeneous bubble flow for various liquid viscosities. Chemical Engineering and Processing: Process Intensification, 2010, 49, 1044-1050.	3.6	42