
Yuko Okamatsu-Ogura

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3836466/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	High Incidence of Metabolically Active Brown Adipose Tissue in Healthy Adult Humans. Diabetes, 2009, 58, 1526-1531.	0.6	1,650
2	Ageâ€Related Decrease in Coldâ€Activated Brown Adipose Tissue and Accumulation of Body Fat in Healthy Humans. Obesity, 2011, 19, 1755-1760.	3.0	402
3	Brown Adipose Tissue, Diet-Induced Thermogenesis, and Thermogenic Food Ingredients: From Mice to Men. Frontiers in Endocrinology, 2020, 11, 222.	3.5	131
4	Indispensable role of mitochondrial UCP1 for antiobesity effect of β3-adrenergic stimulation. American Journal of Physiology - Endocrinology and Metabolism, 2006, 290, E1014-E1021.	3.5	123
5	Near-Infrared Photoluminescent Carbon Nanotubes for Imaging of Brown Fat. Scientific Reports, 2017, 7, 44760.	3.3	71
6	Thermogenic Ability of Uncoupling Protein 1 in Beige Adipocytes in Mice. PLoS ONE, 2013, 8, e84229.	2.5	67
7	Bacteroides spp. promotes branched-chain amino acid catabolism in brown fat and inhibits obesity. IScience, 2021, 24, 103342.	4.1	58
8	UCP1-dependent and UCP1-independent metabolic changes induced by acute cold exposure in brown adipose tissue of mice. Metabolism: Clinical and Experimental, 2020, 113, 154396.	3.4	43
9	Temperature Changes in Brown Adipocytes Detected with a Bimaterial Microcantilever. Biophysical Journal, 2014, 106, 2458-2464.	0.5	37
10	Fucoxanthin inhibits hepatic oxidative stress, inflammation, and fibrosis in diet-induced nonalcoholic steatohepatitis model mice. Biochemical and Biophysical Research Communications, 2020, 528, 305-310.	2.1	34
11	Cold Exposure Induces Proliferation of Mature Brown Adipocyte in a ß3-Adrenergic Receptor-Mediated Pathway. PLoS ONE, 2016, 11, e0166579.	2.5	28
12	Royal jelly ameliorates diet-induced obesity and glucose intolerance by promoting brown adipose tissue thermogenesis in mice. Obesity Research and Clinical Practice, 2018, 12, 127-137.	1.8	26
13	Possible involvement of uncoupling protein 1 in appetite control by leptin. Experimental Biology and Medicine, 2011, 236, 1274-1281.	2.4	25
14	Cell-cycle arrest in mature adipocytes impairs BAT development but not WAT browning, and reduces adaptive thermogenesis in mice. Scientific Reports, 2017, 7, 6648.	3.3	21
15	Uncoupling protein 1 contributes to fat-reducing effect of leptin. Obesity Research and Clinical Practice, 2007, 1, 233-241.	1.8	20
16	Adiponectin Inhibits LPS-Induced HMGB1 Release through an AMP Kinase and Heme Oxygenase-1-Dependent Pathway in RAW 264 Macrophage Cells. Mediators of Inflammation, 2016, 2016, 1-9.	3.0	19
17	Impaired adrenergic agonistâ€dependent beige adipocyte induction in aged mice. Obesity, 2017, 25, 417-423.	3.0	19
18	Association of circulating exosomal miR-122 levels with BAT activity in healthy humans. Scientific Reports, 2019, 9, 13243.	3.3	18

Yuko Okamatsu-Ogura

#	Article	IF	CITATIONS
19	Brown fat UCP1 is not involved in the febrile and thermogenic responses to IL-1β in mice. American Journal of Physiology - Endocrinology and Metabolism, 2007, 292, E1135-E1139.	3.5	17
20	Capsinoids suppress diet-induced obesity through uncoupling protein 1-dependent mechanism in mice. Journal of Functional Foods, 2015, 19, 1-9.	3.4	17
21	Fasting-dependent Vascular Permeability Enhancement in Brown Adipose Tissues Evidenced by Using Carbon Nanotubes as Fluorescent Probes. Scientific Reports, 2018, 8, 14446.	3.3	17
22	Role of macrophages in depot-dependent browning of white adipose tissue. Journal of Physiological Sciences, 2018, 68, 601-608.	2.1	13
23	Characterization of brown adipose tissue thermogenesis in the naked mole-rat (Heterocephalus) Tj ETQq1	1 0.784314 rgBT	/Overlock 1
24	Selenoprotein P-mediated reductive stress impairs cold-induced thermogenesis in brown fat. Cell Reports, 2022, 38, 110566.	6.4	13
25	Adiponectin suppression of late inflammatory mediator, HMGB1-induced cytokine expression in RAW264 macrophage cells. Journal of Biochemistry, 2018, 163, 143-153.	1.7	11
26	Melinjo (Gnetum gnemon L.) seed extract induces uncoupling protein 1 expression in brown fat and protects mice against diet-induced obesity, inflammation, and insulin resistance. Nutrition Research, 2018, 58, 17-25.	2.9	11
27	Retinoic acid modulates lipid accumulation glucose concentration dependently through inverse regulation of <scp>SREBP</scp> †expression in 3T3L1 adipocytes. Genes To Cells, 2017, 22, 568-582.	1.2	10
28	Brown adipocytes postnatally arise through both differentiation from progenitors and conversion from white adipocytes in Syrian hamster. Journal of Applied Physiology, 2018, 124, 99-108.	2.5	10
29	Role of brown adipose tissue in body temperature control during the early postnatal period in Syrian hamsters and mice. Journal of Veterinary Medical Science, 2019, 81, 1461-1467.	0.9	10
30	Melaninâ€concentrating hormoneâ€producing neurons in the hypothalamus regulate brown adipose tissue and thus contribute to energy expenditure. Journal of Physiology, 2021, , .	2.9	10
31	Evaluation of Glucose Uptake and Uncoupling Protein 1 Activity in Adipose Tissue of Diabetic Mice upon Î ² -Adrenergic Stimulation. Molecular Imaging and Biology, 2019, 21, 249-256.	2.6	8
32	Differentiation of bone marrowâ€derived cells toward thermogenic adipocytes in white adipose tissue induced by the β3 adrenergic stimulation. FASEB Journal, 2019, 33, 5196-5207.	0.5	8
33	Kruppelâ€like factorÂ15 regulates fuel switching between glucose and fatty acids in brown adipocytes. Journal of Diabetes Investigation, 2021, 12, 1144-1151.	2.4	8
34	Interaction of Nerve Growth Factor β with Adiponectin and SPARC Oppositely Modulates its Biological Activity. International Journal of Molecular Sciences, 2019, 20, 1541.	4.1	7
35	Impaired adrenergic agonist-dependent beige adipocyte induction in obese mice. Journal of Veterinary Medical Science, 2019, 81, 799-807.	0.9	6
36	Effect of ambient temperature on the proliferation of brown adipocyte progenitors and endothelial cells during postnatal BAT development in Syrian hamsters. Journal of Physiological Sciences, 2019, 69, 23-30.	2.1	5

#	Article	IF	CITATIONS
37	Hibernating bear serum hinders osteoclastogenesis in-vitro. PLoS ONE, 2020, 15, e0238132.	2.5	5
38	Opposing functions of \hat{l}_{\pm} - and \hat{l}^2 -adrenoceptors in the formation of processes by cultured astrocytes. Journal of Pharmacological Sciences, 2021, 145, 228-240.	2.5	5
39	Visualization of intracellular lipid metabolism in brown adipocytes by time-lapse ultra-multiplex CARS microspectroscopy with an onstage incubator. Journal of Chemical Physics, 2021, 155, 125102.	3.0	5
40	Day–night difference in β3-adrenoceptor agonist-induced energy expenditure: Contribution of brown fat thermogenesis and physical activity. Obesity Research and Clinical Practice, 2007, 1, 61-67.	1.8	4
41	Changes in liver microRNA expression and their possible regulatory role in energy metabolism-related genes in hibernating black bears. Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, 2021, 191, 397-409.	1.5	4
42	Chronic low-dose exposure to imidacloprid potentiates high fat diet-mediated liver steatosis in C57BL/6J male mice. Journal of Veterinary Medical Science, 2021, 83, 487-500.	0.9	4
43	Adipocytes and Stromal Cells Regulate Brown Adipogenesis Through Secretory Factors During the Postnatal White-to-Brown Conversion of Adipose Tissue in Syrian Hamsters. Frontiers in Cell and Developmental Biology, 2021, 9, 698692.	3.7	4
44	Organ-specific changes in norepinephrine turnover against various stress conditions in thermoneutral mice. Japanese Journal of Veterinary Research, 2014, 62, 117-27.	0.7	4
45	Brown adipose tissue expresses uncoupling protein 1 in newborn harbor seals (<i>Phoca vitulina</i>). Marine Mammal Science, 2015, 31, 818-827.	1.8	3
46	Expression of Grainyhead-like 2 in the Process of Ductal Development of Mouse Mammary Gland. Journal of Histochemistry and Cytochemistry, 2021, 69, 373-388.	2.5	3
47	Fatâ€specific protein 27α inhibits autophagyâ€dependent lipid droplet breakdown in white adipocytes. Journal of Diabetes Investigation, 2019, 10, 1419-1429.	2.4	2
48	Unique Running Pattern and Mucosal Morphology Found in the Colon of Cotton Rats. Frontiers in Physiology, 2020, 11, 587214.	2.8	2
49	Cold-induced Conversion of Connective Tissue Skeleton in Brown Adipose Tissues. Acta Histochemica Et Cytochemica, 2021, 54, 131-141.	1.6	2
50	Progesterone dose-dependently modulates hepatocyte growth factor production in 3T3-L1 mouse preadipocytes. Endocrine Journal, 2017, 64, 777-785.	1.6	1
51	The response of adipose tissues to <i>Mycoplasma pulmonis</i> and Sendai virus infection in C57BL/6 and DBA/2 mice. Journal of Veterinary Medical Science, 2021, 83, 403-411.	0.9	1
52	Hibernating bear serum hinders osteoclastogenesis in-vitro. , 2020, 15, e0238132.		0
53	Hibernating bear serum hinders osteoclastogenesis in-vitro. , 2020, 15, e0238132.		0
54	Hibernating bear serum hinders osteoclastogenesis in-vitro. , 2020, 15, e0238132.		0

Hibernating bear serum hinders osteoclastogenesis in-vitro. , 2020, 15, e0238132. 54

#	Article	IF	CITATIONS
55	Hibernating bear serum hinders osteoclastogenesis in-vitro. , 2020, 15, e0238132.		Ο