Thierry Cardinal

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3836428/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Silver Clusters Embedded in Glass as a Perennial High Capacity Optical Recording Medium. Advanced Materials, 2010, 22, 5282-5286.	11.1	200
2	Waveguide writing in chalcogenide glasses by a train of femtosecond laser pulses. Optical Materials, 2001, 17, 379-386.	1.7	166
3	Fabrication and characterization of integrated optical waveguides in sulfide chalcogenide glasses. Journal of Lightwave Technology, 1999, 17, 1184-1191.	2.7	162
4	Non-linear optical properties of chalcogenide glasses in the system As–S–Se. Journal of Non-Crystalline Solids, 1999, 256-257, 353-360.	1.5	152
5	Oxyfluoride tellurite glasses doped by erbium: thermal analysis, structural organization and spectral properties. Journal of Non-Crystalline Solids, 2003, 325, 85-102.	1.5	147
6	Optical Properties of Zinc Oxide Nanoparticles and Nanorods Synthesized Using an Organometallic Method. ChemPhysChem, 2006, 7, 2392-2397.	1.0	146
7	Photodarkening and photobleaching of an ytterbium-doped silica double-clad LMA fiber. Optics Express, 2007, 15, 1606.	1.7	138
8	Linear magnetoresistance in topological insulator thin films: Quantum phase coherence effects at high temperatures. Applied Physics Letters, 2013, 102, .	1.5	136
9	Tellurite glasses with peak absolute Raman gain coefficients up to 30 times that of fused silica. Optics Letters, 2003, 28, 1126.	1.7	131
10	Stable Silver Nanoparticles Immobilized in Mesoporous Silica. Chemistry of Materials, 2003, 15, 1993-1999.	3.2	123
11	How Does Thermal Poling Affect the Structure of Soda-Lime Glass?. Journal of Physical Chemistry C, 2010, 114, 12754-12759.	1.5	117
12	Three-dimensional optical data storage using third-harmonic generation in silver zinc phosphate glass. Optics Letters, 2008, 33, 360.	1.7	102
13	Fluorescent silver oligomeric clusters and colloidal particles. Solid State Sciences, 2005, 7, 812-818.	1.5	95
14	Highly Transparent BaAl ₄ O ₇ Polycrystalline Ceramic Obtained by Full Crystallization from Glass. Advanced Materials, 2012, 24, 5570-5575.	11.1	94
15	Optical non-linearity in oxide glasses. Journal of Non-Crystalline Solids, 1996, 203, 96-101.	1.5	93
16	Tellurite and Fluorotellurite Glasses for Fiberoptic Raman Amplifiers: Glass Characterization, Optical Properties, Raman Gain, Preliminary Fiberization, and Fiber Characterization. Journal of the American Ceramic Society, 2007, 90, 1448-1457.	1.9	93
17	Beat the diffraction limit in 3D direct laser writing in photosensitive glass. Optics Express, 2009, 17, 10304.	1.7	86
18	Threeâ€Dimensional Silver Nanoparticle Formation Using Femtosecond Laser Irradiation in Phosphate Glasses: Analogy with Photography. Advanced Functional Materials, 2014, 24, 5824-5832.	7.8	79

#	Article	IF	CITATIONS
19	Structure and nonlinear optical properties of sodium–niobium phosphate glasses. Journal of Non-Crystalline Solids, 2008, 354, 3540-3547.	1.5	77
20	3D Patterning at the Nanoscale of Fluorescent Emitters in Glass. Journal of Physical Chemistry C, 2010, 114, 15584-15588.	1.5	76
21	Thermal Poling of Optical Glasses: Mechanisms and Secondâ€Order Optical Properties. International Journal of Applied Glass Science, 2012, 3, 309-320.	1.0	72
22	Large coercivity in nanostructured rare-earth-free MnxGa films. Applied Physics Letters, 2011, 99, .	1.5	71
23	Tuneable Nanostructuring of Highly Transparent Zinc Gallogermanate Glasses and Glassâ€Ceramics. Advanced Optical Materials, 2014, 2, 364-372.	3.6	70
24	Laser-induced defects in fused silica by femtosecond IR irradiation. Physical Review B, 2006, 73, .	1.1	69
25	Synthesis of Exciton Luminescent ZnO Nanocrystals Using Continuous Supercritical Microfluidics. Angewandte Chemie - International Edition, 2011, 50, 12071-12074.	7.2	63
26	Luminescence properties of silver zinc phosphate glasses following different irradiations. Journal of Luminescence, 2009, 129, 1514-1518.	1.5	59
27	Crystal growth, luminescent and lasing properties of the ytterbium doped Li6Y(BO3)3 compound. Optical Materials, 2005, 27, 1681-1685.	1.7	54
28	Coherent Acoustic Vibration of Metal Nanoshells. Nano Letters, 2007, 7, 138-142.	4.5	49
29	Optical properties of tellurite glasses elaborated within the TeO2–Tl2O–Ag2O and TeO2–ZnO–Ag2O ternary systems. Journal of Alloys and Compounds, 2013, 561, 151-160.	2.8	49
30	Correlations between structural properties of Nb2O5-NaPO3-Na2B4O7 glasses and non-linear optical activities. Journal of Non-Crystalline Solids, 1997, 222, 228-234.	1.5	49
31	Quantifying Raman gain coefficients in tellurite glasses. Journal of Non-Crystalline Solids, 2004, 345-346, 396-401.	1.5	48
32	Raman gain measurements of thallium-tellurium oxide glasses. Optics Express, 2005, 13, 1144.	1.7	48
33	Raman gain of selected tellurite glasses for IR fibre lasers calculated from spontaneous scattering spectra. Optical Materials, 2008, 30, 946-951.	1.7	46
34	Direct laser writing of a new type of waveguides in silver containing glasses. Scientific Reports, 2017, 7, 11124.	1.6	46
35	Femtosecond laser structuring and optical properties of a silver and zinc phosphate glass. Journal of Non-Crystalline Solids, 2010, 356, 2658-2665.	1.5	43
36	Three-dimensional direct femtosecond laser writing of second-order nonlinearities in glass. Optics Letters, 2012, 37, 1029.	1.7	43

#	Article	IF	CITATIONS
37	On the femtosecond laser-induced photochemistry in silver-containing oxide glasses: mechanisms, related optical and physico-chemical properties, and technological applications. Advanced Optical Technologies, 2018, 7, 291-309.	0.9	41
38	Correlations between structural properties of Nb2O5î—,NaPO3î—,Na2B4O7 glasses and non-linear optical activities. Journal of Non-Crystalline Solids, 1997, 222, 228-234.	1.5	40
39	Intrinsic fluorescence from individual silver nanoparticles. Physica E: Low-Dimensional Systems and Nanostructures, 2003, 17, 559-560.	1.3	39
40	Thermal properties and surface reactivity in simulated body fluid of new strontium ion-containing phosphate glasses. Journal of Materials Science: Materials in Medicine, 2013, 24, 1407-1416.	1.7	39
41	Spectral properties of Er 3+ doped oxyfluoride tellurite glasses. Journal of Non-Crystalline Solids, 2003, 326-327, 359-363.	1.5	38
42	Effect of niobium oxide introduction on erbium luminescence in borophosphate glasses. Optical Materials, 2006, 28, 172-180.	1.7	38
43	Precise and absolute measurements of the complex third-order optical susceptibility. Journal of the Optical Society of America B: Optical Physics, 2004, 21, 2180.	0.9	36
44	Formation and thermo-assisted stabilization of luminescent silver clusters in photosensitive glasses. Materials Research Bulletin, 2013, 48, 1637-1644.	2.7	36
45	Surface Reactivity Control of a Borosilicate Glass Using Thermal Poling. Journal of Physical Chemistry C, 2015, 119, 22999-23007.	1.5	36
46	Effect of the glass composition on the chemical durability of zinc-phosphate-based glasses in aqueous solutions. Journal of Physics and Chemistry of Solids, 2013, 74, 121-127.	1.9	35
47	Nonlinear optical properties for TiO2containing phosphate, borophosphate, and silicate glasses. Journal of Applied Physics, 1997, 81, 1481-1487.	1.1	34
48	Comparative study of photo-induced variations of X-ray diffraction and refractive index in photo-thermo-refractive glass. Journal of Non-Crystalline Solids, 2003, 325, 275-281.	1.5	34
49	Investigation on the coloring and bleaching processes of WO _{3â^'x} photochromic thin films. Journal of Materials Chemistry C, 2020, 8, 9410-9421.	2.7	34
50	Trapped Molecular and Ionic Species in Poled Borosilicate Glasses: Toward a Rationalized Description of Thermal Poling in Glasses. Journal of Physical Chemistry C, 2014, 118, 3716-3723.	1.5	33
51	Resolved discrepancies between visible spontaneous Raman cross-section and direct near-infrared Raman gain measurements in TeO2-based glasses. Optics Express, 2005, 13, 4759.	1.7	32
52	Effect of the introduction of Na2B4O7 on erbium luminescence in tellurite glasses. Journal of Non-Crystalline Solids, 2002, 298, 76-88.	1.5	31
53	Impact of tellurite-based glass structure on Raman gain. Chemical Physics Letters, 2012, 554, 123-127.	1.2	31
54	Direct 3D-printing of phosphate glass by fused deposition modeling. Materials and Design, 2020, 194, 108957.	3.3	31

#	Article	IF	CITATIONS
55	Hyperâ€Raman and Raman scattering in paratellurite TeO ₂ . Journal of Raman Spectroscopy, 2013, 44, 739-745.	1.2	28
56	Structure and Properties of Gallium-Rich Sodium Germano-Gallate Glasses. Journal of Physical Chemistry C, 2019, 123, 1370-1378.	1.5	28
57	Nano-particles (NPs) of WO3-type compounds by polyol route with enhanced electrochromic properties. Journal of Alloys and Compounds, 2020, 823, 153690.	2.8	28
58	Femtosecond single-beam direct laser poling of stable and efficient second-order nonlinear optical properties in glass. Journal of Applied Physics, 2014, 115, .	1.1	27
59	Continuous supercritical route for quantum-confined GaN nanoparticles. Reaction Chemistry and Engineering, 2016, 1, 151-155.	1.9	27
60	Extended germano-gallate fiber drawing domain: from germanates to gallates optical fibers. Optical Materials Express, 2019, 9, 2437.	1.6	27
61	Europiumâ€Đoped Mesoporous Titania Thin Films: Rareâ€Earth Locations and Emission Fluctuations under Illumination. ChemPhysChem, 2008, 9, 2077-2084.	1.0	26
62	Fluorescence and second-harmonic generation correlative microscopy to probe space charge separation and silver cluster stabilization during direct laser writing in a tailored silver-containing glass. Optical Materials Express, 2013, 3, 1855.	1.6	26
63	Nanoparticles (NPs) of WO3-x Compounds by Polyol Route with Enhanced Photochromic Properties. Nanomaterials, 2019, 9, 1555.	1.9	26
64	Properties, structure and crystallization study of germano-gallate glasses in the Ga2O3-GeO2-BaO-K2O system. Journal of Non-Crystalline Solids, 2019, 514, 98-107.	1.5	26
65	Synthesis and characterization of Eu ³⁺ , Ti ⁴⁺ @ ZnO organosols and nanocrystalline c-ZnTiO ₃ thin films aiming at high transparency and luminescence. Science and Technology of Advanced Materials, 2010, 11, 044401.	2.8	24
66	Accurate Second Harmonic Generation Microimprinting in Glassy Oxide Materials. Advanced Optical Materials, 2016, 4, 929-935.	3.6	24
67	Lithium ion as growth-controlling agent of ZnO nanoparticles prepared by organometallic synthesis. New Journal of Chemistry, 2008, 32, 662-669.	1.4	22
68	Micro-structuring the surface reactivity of a borosilicate glass via thermal poling. Chemical Physics Letters, 2016, 664, 10-15.	1.2	22
69	Photowritable Silverâ€Containing Phosphate Glass RibbonÂFibers. Advanced Optical Materials, 2016, 4, 162-168.	3.6	22
70	Thermal and structural modification in transparent and magnetic germanoborate glasses induced by Gd2O3. Ceramics International, 2020, 46, 22079-22089.	2.3	22
71	Glass forming regions, structure and properties of lanthanum barium germanate and gallate glasses. Journal of Non-Crystalline Solids, 2021, 571, 121064.	1.5	21
72	Influence of modifier oxides on the structural and optical properties of binary TeO2 glasses. Journal of Applied Physics, 2007, 101, 023526.	1.1	20

#	Article	IF	CITATIONS
73	Properties and structural investigation of gallophosphate glasses by ⁷¹ Ga and ³¹ P nuclear magnetic resonance and vibrational spectroscopies. Journal of Materials Chemistry C, 2014, 2, 7906-7917.	2.7	20
74	Modeling of cluster organization in metal-doped oxide glasses irradiated by a train of femtosecond laser pulses. Physical Review A, 2016, 93, .	1.0	20
75	Amorphous Tm3+ doped sulfide thin films fabricated by sputtering. Optical Materials, 2010, 33, 220-226.	1.7	19
76	Influence of niobium and titanium introduction on optical and physical properties of silicate glasses. Materials Research Bulletin, 2013, 48, 1376-1380.	2.7	19
77	Patterning linear and nonlinear optical properties of photosensitive glasses by femtosecond structured light. Optics Letters, 2015, 40, 201.	1.7	19
78	Emission-photoactivity cross-processing of mesoporous interfacial charge transfer in Eu3+ doped titania. Physical Chemistry Chemical Physics, 2011, 13, 11878.	1.3	18
79	Large scale micro-structured optical second harmonic generation response imprinted on glass surface by thermal poling. Journal of Applied Physics, 2015, 118, .	1.1	18
80	Influence of P2O5 and Al2O3 content on the structure of erbium-doped borosilicate glasses and on their physical, thermal, optical and luminescence properties. Materials Research Bulletin, 2015, 63, 41-50.	2.7	18
81	Comparative study between the standard type I and the type A femtosecond laser induced refractive index change in silver containing glasses. Optical Materials Express, 2019, 9, 2640.	1.6	18
82	Preparation and characterization of germanium oxysulfide glassy films for optics. Materials Research Bulletin, 2008, 43, 1179-1187.	2.7	17
83	Influence of Hydroxyl Group on <scp>IR</scp> Transparency of Telluriteâ€Based Glasses. International Journal of Applied Glass Science, 2014, 5, 178-184.	1.0	17
84	Radiation-Induced Defects and Effects in Germanate and Tellurite Glasses. Materials, 2020, 13, 3846.	1.3	17
85	Raman Scattering and XAFS Study of Optically Nonlinear Glasses of the TiO2-NaPO3-Na2B4O7 System. Journal of Solid State Chemistry, 1995, 120, 151-156.	1.4	16
86	Contribution of theoretical chemistry to the investigation of optical non linearities in glasses. Annales De Chimie: Science Des Materiaux, 1998, 23, 27-32.	0.2	16
87	Femtosecond laser structuring of silver-containing glass: Silver redistribution, selective etching, and surface topology engineering. Journal of Applied Physics, 2015, 118, .	1.1	16
88	Structural characterization and calorimetric dissolution behavior of Na2O CuO P2O5 glasses. Journal of Non-Crystalline Solids, 2016, 452, 144-152.	1.5	16
89	Mixture experimental design applied to gallium-rich GaO3/2-GeO2-NaO1/2 glasses. Journal of Non-Crystalline Solids, 2017, 455, 83-89.	1.5	16
90	Structural influence on the femtosecond laser ability to create fluorescent patterns in silver-containing sodium-gallium phosphate glasses. Optical Materials Express, 2018, 8, 3748.	1.6	16

#	Article	IF	CITATIONS
91	Second Harmonic Generation in Sodium Tantalum Germanate Glasses by Thermal Poling. Journal of Physical Chemistry C, 2019, 123, 26528-26535.	1.5	16
92	The effect of the sodium content on the structure and the optical properties of thermally poled sodium and niobium borophosphate glasses. Journal of Applied Physics, 2020, 128, .	1.1	16
93	Local field-induced optical properties of Ag-coated CdS quantum dots. Optics Express, 2006, 14, 7994.	1.7	15
94	Tellurite-based core-clad dual-electrodes composite fibers. Optical Materials Express, 2017, 7, 1503.	1.6	15
95	Erbium luminescence properties of niobium-rich oxide glasses. Journal of Non-Crystalline Solids, 2005, 351, 2076-2084.	1.5	14
96	Effect of silver on phase separation and crystallization of niobium oxide containing glasses. Journal of Solid State Chemistry, 2009, 182, 1351-1358.	1.4	14
97	Evolution of glass properties during a substitution of S by Se in Ge28Sb12S60â^'xSex glass network. Journal of Non-Crystalline Solids, 2012, 358, 1740-1745.	1.5	14
98	Luminescence properties of ZrO2 mesoporous thin films doped with Eu3+ and Agn. Microporous and Mesoporous Materials, 2013, 170, 123-130.	2.2	14
99	Dual-color control and inhibition of direct laser writing in silver-containing phosphate glasses. Optics Letters, 2015, 40, 4134.	1.7	14
100	Patterning of the Surface Electrical Potential on Chalcogenide Glasses by a Thermoelectrical Imprinting Process. Journal of Physical Chemistry C, 2020, 124, 23150-23157.	1.5	14
101	Electrically Microâ€Polarized Amorphous Sodoâ€Niobate Film Competing with Crystalline Lithium Niobate Secondâ€Order Optical Response. Advanced Optical Materials, 2020, 8, 2000202.	3.6	14
102	Heavy-oxide glasses with superior mechanical assets for nonlinear fiber applications in the mid-infrared. Optical Materials Express, 2021, 11, 1420.	1.6	14
103	Photosensitivity of barium germano-gallate glasses under femtosecond laser direct writing for Mid-IR applications. Ceramics International, 2021, 47, 34235-34241.	2.3	14
104	Strong nuclear contribution to the optical Kerr effect in niobium oxide containing glasses. Physical Review B, 2007, 75, .	1.1	13
105	Sol–gel technique for the generation of europium-doped mesoporous and dense thin films: A luminescent study. Journal of Luminescence, 2009, 129, 1641-1645.	1.5	13
106	Modified electrical transport probe design for standard magnetometer. Review of Scientific Instruments, 2012, 83, 033904.	0.6	13
107	Enhancement of nanograting formation assisted by silver ions in a sodium gallophosphate glass. Optics Letters, 2014, 39, 5491.	1.7	13
108	Transparent Glasses and Glass-Ceramics in the Ternary System TeO2-Nb2O5-PbF2. Materials, 2021, 14, 317.	1.3	13

#	Article	IF	CITATIONS
109	Low-frequency vibrational excitations in a niobium–phosphate glass for Raman gain applications. Vibrational Spectroscopy, 2008, 48, 12-15.	1.2	12
110	Photosensitivity and second harmonic generation in chalcogenide arsenic sulfide poled glasses. Optical Materials Express, 2012, 2, 45.	1.6	12
111	Durability study of a fluorescent optical memory in glass studied by luminescence spectroscopy. Microelectronics Reliability, 2013, 53, 1514-1518.	0.9	11
112	Nonlinear Optical Properties of Glass. Springer Handbooks, 2019, , 193-225.	0.3	11
113	Class local structure and optical nonlinearities of oxide glasses. Journal of Non-Crystalline Solids, 1998, 239, 131-138.	1.5	10
114	Nanoparticle generation inside Ag-doped LBG glass by femtosecond laser irradiation. Optical Materials Express, 2016, 6, 743.	1.6	10
115	Sub-diffraction-limited fluorescent patterns by tightly focusing polarized femtosecond vortex beams in a silver-containing glass. Optics Express, 2017, 25, 10565.	1.7	10
116	Femtosecond laser micro-patterning of optical properties and functionalities in novel photosensitive silver-containing fluorophosphate glasses. Journal of Non-Crystalline Solids, 2019, 517, 51-56.	1.5	10
117	Stackâ€andâ€Draw Applied to the Engineering of Multiâ€Material Fibers with Non ylindrical Profiles. Advanced Functional Materials, 2021, 31, 2011063.	7.8	10
118	Effect of potassium or yttrium introduction in Yb3+-doped germano-gallate glasses on the structural, luminescence properties and fiber processing. Optical Materials, 2022, 125, 112070.	1.7	10
119	Optical response of silver coating on CdS colloids. Chemical Physics Letters, 2004, 394, 324-328.	1.2	9
120	Processing and characterization of new oxysulfide glasses in the Ge–Ga–As–S–O system. Journal of Solid State Chemistry, 2008, 181, 2869-2876.	1.4	9
121	Processing and characterization of new passive and active oxysulfide glasses in the Ge–Ga–Sb–S–O system. Journal of Solid State Chemistry, 2009, 182, 2646-2655.	1.4	9
122	Laser writing of nonlinear optical properties in silver-doped phosphate glass. Optics Letters, 2017, 42, 1688.	1.7	9
123	Silver centers luminescence in phosphate glasses subjected to Xâ€Rays or combined Xâ€rays and femtosecond laser exposure. International Journal of Applied Glass Science, 2020, 11, 15-26.	1.0	9
124	Enhancement of mechanical properties and chemical durability of Sodaâ€lime silicate glasses treated by DC gas discharges. Journal of the American Ceramic Society, 2021, 104, 157-166.	1.9	9
125	Third-Harmonic Generation Microscopy for Material Characterization. Journal of the Optical Society of Korea, 2006, 10, 188-195.	0.6	8
126	Luminescence properties of micrometric structures induced by direct laser writing in silver containing phosphate glass. Journal of Non-Crystalline Solids, 2013, 377, 142-145.	1.5	8

#	Article	IF	CITATIONS
127	Structure-properties relationship study in niobium oxide containing GaO3/2-LaO3/2-KO1/2 gallate glasses. Materials Research Bulletin, 2019, 112, 124-131.	2.7	8
128	Thermal and structural modification in transparent and magnetic gallogermanate glasses induced by Gd2O3. Journal of Alloys and Compounds, 2022, 912, 165181.	2.8	8
129	Fabrication and characterization of new Er3+ doped niobium borophosphate glass fiber. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2005, 117, 283-286.	1.7	7
130	Optical Emission Detector Based on Plasma Discharge Generation at the Tip of a Multimaterial Fiber. Sensors, 2020, 20, 2353.	2.1	7
131	Heavy metal oxide glass-ceramics containing luminescent gallium-garnets single crystals for photonic applications. Journal of Alloys and Compounds, 2021, 864, 158804.	2.8	7
132	The influence of potassium substitution for barium on the structure and property of silver-doped germano-gallate glasses. Journal of Non-Crystalline Solids, 2021, 566, 120889.	1.5	7
133	Engineering Glassy Chalcogenide Materials for Integrated Optics Applications. , 0, , 383-405.		6
134	Second-harmonic generation in sodium and niobium borophosphate glasses after poling under field-assisted silver ions anodic injection. Journal of Applied Physics, 2008, 104, 053114.	1.1	6
135	Erbium-doped borosilicate glasses containing various amounts of P2O5 and Al2O3: Influence of the silica content on the structure and thermal, physical, optical and luminescence properties. Materials Research Bulletin, 2015, 70, 47-54.	2.7	6
136	Nanoscale self-arranged layers of silver nanoparticles in glass. Chemical Physics Letters, 2016, 652, 235-238.	1.2	6
137	Second harmonic generation in germanotellurite bulk glassâ€ceramics. Journal of the American Ceramic Society, 2017, 100, 1412-1423.	1.9	6
138	Photoluminescence of Ag+ and Agn+m in co-doped Pr3+/Yb3+ fluorophosphate glasses: tuning visible emission and energy transfer to Pr3+/Yb3+ ions through excitation in different silver species. Journal of Materials Science: Materials in Electronics, 2019, 30, 16878-16885.	1.1	6
139	Investigation of the Na2O/Ag2O ratio on the synthesis conditions and properties of the 80TeO2–10ZnO–[(10⒒x)Na2O–xAg2O] glasses. Journal of Non-Crystalline Solids, 2019, 525, 119691.	1.5	6
140	Glasses for Raman nonlinear optics. Laser Physics, 2006, 16, 902-910.	0.6	5
141	Two-photon excited fluorescence in the LYB:Eu monoclinic crystal: towards a new scheme of single-beam dual-voxel direct laser writing in crystals. Optics Express, 2013, 21, 822.	1.7	5
142	Raman Gain in Tellurite Glass: How Combination of IR, Raman, Hyper-Raman and Hyper-Rayleigh Brings New Understandings. Journal of Physical Chemistry C, 2016, 120, 23144-23151.	1.5	5
143	Effect of partial crystallization on the structural and Er 3+ luminescence properties of phosphate-based glasses. Optical Materials, 2017, 64, 230-238.	1.7	5
144	Secondâ€Order Optical Response in Electrically Polarized Sodoâ€Niobate Amorphous Thin Films: Particularity of Multilayer Systems. Advanced Photonics Research, 2021, 2, 2000171.	1.7	5

1

1

#	Article	IF	CITATIONS
145	Ultrashort laser induced spatial redistribution of silver species and nano-patterning of etching selectivity in silver-containing glasses. Optics Express, 2019, 27, 13675.	1.7	5
146	Evolution of the linear and nonlinear optical properties of femtosecond laser exposed fused silica. Journal of the Optical Society of America B: Optical Physics, 2009, 26, 2077.	0.9	4
147	Examination of femtosecond laser matter interaction in multipulse regime for surface nanopatterning of vitreous substrates. Optics Express, 2013, 21, 29090.	1.7	4
148	Three-Dimensional High Spatial Localization of Efficient Resonant Energy Transfer from Laser-Assisted Precipitated Silver Clusters to Trivalent Europium Ions. Crystals, 2021, 11, 148.	1.0	4
149	Laser Direct Writing of Silver Clustersâ€Based Subwavelength Periodic Structures Embedded in Midâ€Infrared Galloâ€Germanate Glass. Advanced Photonics Research, 2022, 3, .	1.7	4
150	CRYSTALLIZATION OF Na ₄ Nb ₈ P ₄ O ₃₂ IN BOROPHOSPHATE GLASSES. Phosphorus Research Bulletin, 1999, 10, 646-651.	0.1	3
151	Thermochromoluminescent Mn2+-Doped oxides as thermal sensor for selective laser sintering. Optical Materials, 2020, 110, 110542.	1.7	3
152	Ceramic Powder Bed Laser Sintering (CPBLS) on copper-doped hydroxyapatite: Creation of thin (5–50 μm) Tj	ETQq0 0 (2.3) rgBT /Over
153	Femtosecond Direct Laser Writing of Silver Clusters in Phosphate Glasses for X-ray Spatially-Resolved Dosimetry. Chemosensors, 2022, 10, 110.	1.8	3
154	Second-harmonic generation of thermally poled silver doped sodo-borophosphate glasses. Journal of Applied Physics, 2009, 105, .	1.1	2
155	Microstructured SHG patterns on Sm2O3-doped borophosphate niobium glasses by laser-induced thermal poling. Ceramics International, 2021, 47, 10123-10129.	2.3	2
156	Spherulitic crystallization of quartz-like GeO2 and correlated second harmonic generation in sodium tantalum germanate glasses. Journal of Alloys and Compounds, 2021, 877, 160245.	2.8	2
157	Powder bed laser sintering of copper-doped hydroxyapatite: Numerical and experimental parametric analysis. Additive Manufacturing, 2021, 46, 102044.	1.7	2
158	Elaboration of multimaterials optical fibers combining tellurite glass and metal for electro-optical applications. , 2020, , .		2
159	Microscaled design of the linear and non-linear optical properties of tantalum germanate glasses by thermal poling. Journal of Materials Chemistry C, 2022, 10, 10310-10319.	2.7	2

160 Strong nuclear contribution to the optical Kerr effect in niobium oxide containing glasses. , 2007, , .

161	Temporal evolution of photodarkening and successive photobleaching of an Ytterbium-doped silica double-clad LMA fiber. , 2007, , .	1

162 Spectroscopic and lasing properties of Ti:Sapphire at low temperature. , 2007, , .

#	Article	lF	CITATIONS
163	Raman and fluorescence correlative microscopy in polarized light to probe local femtosecond laser-induced amorphization of the doped monoclinic crystal LYB:Eu. Chemical Physics Letters, 2013, 578, 70-75.	1.2	1
164	Direct laser writing of efficient effective second order nonlinear optical properties in a tailored silver-doped phosphate glass. MATEC Web of Conferences, 2013, 8, 02006.	0.1	1
165	Femtosecond laser-induced nanogratings formation assisted by silver ions in a gallophosphate glass and correlated optical properties. , 2015, , .		1
166	In-situ fiber drawing induced synthesis of silver-tellurium semiconductor compounds. Journal of Non-Crystalline Solids, 2020, 543, 120159.	1.5	1
167	Chemistry Platform for the Ultrafast Continuous Synthesis of Highâ€Quality Ill–V Quantum Dots. Chemistry - A European Journal, 2021, 27, 12965-12970.	1.7	1
168	Thermally poled oxide glasses: correlation between polarization mechanisms and non linear optical properties. , 2012, , .		1
169	Spatial and geometry control of second order optical properties in inorganic amorphous materials. , 2016, , .		1
170	Tellurite-Based Core-Clad Dual-Electrodes Composites Fibers. , 2019, , .		1
171	Spatial beam reshaping and large-band nonlinear conversion in rectangular-core phosphate glass fibers. Frontiers of Optoelectronics, 2022, 15, 1.	1.9	1
172	Fiber drawing ability and loss optimization of niobium rich borophosphate optical glass fibers. Optical Materials, 2022, 131, 112628.	1.7	1
173	Fabrication and characterization of chalcogenide films. , 2005, , .		0
174	New glasses and their characterization for raman gain. , 0, , .		0
175	Tailor-made nanomaterials for biological and medical applications. , 2006, , .		Ο
176	Photodarkening and Photobleaching of an Ytterbium-doped Silica Double-clad LMA fiber. , 2007, , .		0
177	Strong nuclear contribution to the optical Kerr effect in niobium oxide containing glasses. , 2007, , .		Ο
178	3D optical data storage using third-harmonic generation in silver zinc phosphate glass. , 2008, , .		0
179	Plasma properties during the formation of "nanograting" structures inside fused silica. , 2008, , .		0
180	Low-Frequency Excitations in 20Nb[sub 2]O[sub 5â^']80NaPO[sub 3] Glass for Raman Gain Applications. , 2010, , .		0

#	Article	IF	CITATIONS
181	Introduction: Femtosecond Direct Laser Writing and Structuring of Materials (FDLW) feature. Optical Materials Express, 2011, 1, 996.	1.6	0
182	New step towards the future perennial high capacity optical recording medium. , 2011, , .		0
183	Direct laser writing of nonlinear properties in photosensitive glass. , 2011, , .		0
184	Direct Laser-Writing in silver-zinc doped phosphate glasses: correlated linear and nonlinear optical properties. MATEC Web of Conferences, 2013, 8, 02001.	0.1	0
185	Two-photon excited fluorescence in the LYB:Eu monoclinic crystal: new scheme for single-beam dual-voxel direct laser writing in crystals. , 2013, , .		0
186	Raman and fluorescence correlative microscopy in polarized light to probe local femtosecond laser-induced amorphization of the doped monoclinic crystal LYB:Eu. MATEC Web of Conferences, 2013, 8, 04007.	0.1	0
187	Femtosecond Generation of Nano-Fibers. MATEC Web of Conferences, 2013, 8, 03006.	0.1	0
188	Femtosecond single-beam direct laser poling of silver-doped oxide glasses : correlation between fluorescence, metallic nanoparticles precipitation and effective second-order nonlinear optical properties. , 2014, , .		0
189	Femtosecond laser processing of silver-containing glass with optical vortex beams. Proceedings of SPIE, 2014, , .	0.8	0
190	Femtosecond laser patterning of plasmonic and nonlinear optical properties in silver-doped. , 2015, , .		0
191	Femtosecond laser writing of new type of waveguides in silver containing glasses (Conference) Tj ETQq1 1 0.784	314 rgBT	/Oyerlock 10
192	Towards Femtosecond Laser Writting of Non-Conventional Waveguide Bragg Gratings in Silver-Containing Glasses. , 2019, , .		0
193	Laser Writing of 2D Nanostructures in Silver-Doped Phosphate Glass. , 2019, , .		0
194	Measurements of Large and Broadband Raman Gain Coefficients for a Number of Glass Families. , 2005, ,		0
195	Silver clusters as probes for femtosecond laser - glass interaction. , 2008, , .		0
196	Femtosecond laser induced micro-structured silver containing glass as an engineered nonlinear optical material. , 2009, , .		0
197	Second harmonic generation by electro-poling in femtosecond laser induced micro-structured silver containing glass. , 2009, , .		0
198	Tailoring of the luminescence properties of a silver and zinc phosphate glass at the nanoscale. , 2010, ,		0

#	Article	IF	CITATIONS
199	Second-harmonic generation by direct-laser-induced-poling in a femto-photo-luminescent glass. , 2010, , .		Ο
200	Development of photosensitive glasses for direct laser writing. , 2010, , .		0
201	Femtosecond direct laser writing of linear and nonlinear optical properties in photosensitive glass. , 2012, , .		0
202	Direct Laser-Writing in a silver-zinc doped phosphate glass: Spatial discrimination of aggregates - Formation mechanism. , 2012, , .		0
203	Design of silver activated phosphate and borophosphate based glasses for multi-scale structured optical materials. , 2012, , .		0
204	Femtosecond direct laser writing of linear and nonlinear optical properties in photosensitive glass. , 2013, , .		0
205	Feature issue introduction: Progress in Ultrafast Laser Modifications of Materials. Optical Materials Express, 2013, 3, 1789.	1.6	Ο
206	DLW of silver containing phosphate glass and fiber. , 2018, , .		0
207	Femtosecond laser writing of near-surface waveguides for refractive-index sensing. , 2020, , .		Ο
208	Novel optical amorphous phosphate materials with a low melting temperature. Materials Advances, 0,	2.6	0