Anders Woetmann

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3836372/publications.pdf

Version: 2024-02-01

92 papers 4,480 citations

94269 37 h-index 64 g-index

94 all docs 94 docs citations

times ranked

94

5498 citing authors

#	Article	IF	CITATIONS
1	CD8 ⁺ tissueâ€resident memory T cells recruit neutrophils that are essential for flareâ€ups in contact dermatitis. Allergy: European Journal of Allergy and Clinical Immunology, 2022, 77, 513-524.	2.7	22
2	Omalizumab serum levels predict treatment outcomes in patients with chronic spontaneous urticaria: A threeâ€month prospective study. Clinical and Experimental Allergy, 2022, 52, 715-718.	1.4	2
3	The Thioredoxin-Interacting Protein TXNIP Is a Putative Tumour Suppressor in Cutaneous T-Cell Lymphoma. Dermatology, 2021, 237, 283-290.	0.9	8
4	MicroRNA-93 Targets p21 and Promotes Proliferation in Mycosis Fungoides T Cells. Dermatology, 2021, 237, 277-282.	0.9	8
5	Diagnostic Two-Gene Classifier in Early-Stage Mycosis Fungoides: A Retrospective MulticenterÂStudy. Journal of Investigative Dermatology, 2021, 141, 213-217.e5.	0.3	6
6	Inhibition of succinate dehydrogenase activity impairs human T cell activation and function. Scientific Reports, 2021, 11, 1458.	1.6	24
7	JAK3 Is Expressed in the Nucleus of Malignant T Cells in Cutaneous T Cell Lymphoma (CTCL). Cancers, 2021, 13, 280.	1.7	17
8	Epidermal T cell subsetsâ€"Effect of age and antigen exposure in humans and mice. Contact Dermatitis, 2021, 84, 375-384.	0.8	1
9	Autologous serum skin test reactions in chronic spontaneous urticaria differ from heterologous cell reactions. Journal of the European Academy of Dermatology and Venereology, 2021, 35, 1338-1345.	1.3	7
10	Impaired Vitamin D Signaling in T Cells From a Family With Hereditary Vitamin D Resistant Rickets. Frontiers in Immunology, 2021, 12, 684015.	2.2	8
11	Distinct contribution of hyperbaric oxygen therapy to human neutrophil function and antibiotic efficacy against <i>Staphylococcus aureus</i> . Apmis, 2021, 129, 566-573.	0.9	5
12	Vitamin D Inhibits IL-22 Production Through a Repressive Vitamin D Response Element in the il22 Promoter. Frontiers in Immunology, 2021, 12, 715059.	2.2	9
13	Macrophages Control the Bioavailability of Vitamin D and Vitamin D-Regulated T Cell Responses. Frontiers in Immunology, 2021, 12, 722806.	2.2	21
14	Normal T and B Cell Responses Against SARS-CoV-2 in a Family With a Non-Functional Vitamin D Receptor: A Case Report. Frontiers in Immunology, 2021, 12, 758154.	2.2	7
15	What Basophil Testing Tells Us About CSU Patients – Results of the CORSA Study. Frontiers in Immunology, 2021, 12, 742470.	2.2	21
16	Staphylococcus aureus Induces Signal Transducer and Activator of Transcription 5â€'Dependent miR-155 Expression in Cutaneous T-Cell Lymphoma. Journal of Investigative Dermatology, 2021, 141, 2449-2458.	0.3	15
17	Acute Experimental Barrier Injury Triggers Ulcerative Colitis–Specific Innate Hyperresponsiveness and Ulcerative Colitis–Type Microbiome Changes in Humans. Cellular and Molecular Gastroenterology and Hepatology, 2021, 12, 1281-1296.	2.3	7
18	Investigating the Early Events after Skin-Barrier Disruption Using Microdialysis—A Human Ex Vivo Skin Model. Dermato, 2021, 1, 47-58.	0.6	O

#	Article	lF	Citations
19	Expression of the Voltage-Gated Potassium Channel Kv1.3 in Lesional Skin from Patients with Cutaneous T-Cell Lymphoma and Benign Dermatitis. Dermatology, 2020, 236, 123-132.	0.9	3
20	Pathogenic CD8+ Epidermis-Resident Memory T Cells Displace Dendritic Epidermal T Cells in Allergic Dermatitis. Journal of Investigative Dermatology, 2020, 140, 806-815.e5.	0.3	28
21	Low SATB1 Expression Promotes IL-5 and IL-9 Expression in Sézary Syndrome. Journal of Investigative Dermatology, 2020, 140, 713-716.	0.3	5
22	Ex vivo culture of lesional psoriasis skin for pharmacological testing. Journal of Dermatological Science, 2020, 97, 109-116.	1.0	7
23	<i>Staphylococcus aureus</i> alpha-toxin inhibits CD8 ⁺ T cell-mediated killing of cancer cells in cutaneous T-cell lymphoma. Oncolmmunology, 2020, 9, 1751561.	2.1	24
24	MicroRNAs in the Pathogenesis, Diagnosis, Prognosis and Targeted Treatment of Cutaneous T-Cell Lymphomas. Cancers, 2020, 12, 1229.	1.7	28
25	Staphylococcus aureus enterotoxins induce FOXP3 in neoplastic T cells in Sézary syndrome. Blood Cancer Journal, 2020, 10, 57.	2.8	24
26	Suppressed microRNAâ€195â€5p expression in mycosis fungoides promotes tumor cell proliferation. Experimental Dermatology, 2020, 30, 1141-1149.	1.4	4
27	The Skin Reservoir Model: A Tool for Evaluating Microdialysis Sampling of Large Biomarkers from Human Skin. Acta Dermato-Venereologica, 2020, 100, 1-8.	0.6	3
28	Antibiotics inhibit tumor and disease activity in cutaneous T-cell lymphoma. Blood, 2019, 134, 1072-1083.	0.6	94
29	Staphylococcal alpha-toxin tilts the balance between malignant and non-malignant CD4 ⁺ T cells in cutaneous T-cell lymphoma. Oncolmmunology, 2019, 8, e1641387.	2.1	32
30	Tumor necrosis factor induces rapid down-regulation of TXNIP in human T cells. Scientific Reports, 2019, 9, 16725.	1.6	16
31	Expression and function of Kv1.3 channel in malignant T cells in Sézary syndrome. Oncotarget, 2019, 10, 4894-4906.	0.8	3
32	The inhibitory checkpoint, PD-L2, is a target for effector T cells: Novel possibilities for immune therapy. Oncolmmunology, 2018, 7, e1390641.	2.1	33
33	Prognostic miRNA classifier in early-stage mycosis fungoides: development and validation in a Danish nationwide study. Blood, 2018, 131, 759-770.	0.6	54
34	Interleukin-26 (IL-26) is a novel anti-microbial peptide produced by T cells in response to staphylococcal enterotoxin. Oncotarget, 2018, 9, 19481-19489.	0.8	15
35	Single-cell heterogeneity in Sézary syndrome. Blood Advances, 2018, 2, 2115-2126.	2.5	78
36	SATB1 in Malignant T Cells. Journal of Investigative Dermatology, 2018, 138, 1805-1815.	0.3	38

3

#	Article	IF	CITATIONS
37	Circulating Cell-Free miR-375 as Surrogate Marker of Tumor Burden in Merkel Cell Carcinoma. Clinical Cancer Research, 2018, 24, 5873-5882.	3.2	45
38	Increased Production of IL-17A-Producing $\hat{I}^3\hat{I}$ Cells in the Thymus of Filaggrin-Deficient Mice. Frontiers in Immunology, 2018, 9, 988.	2.2	12
39	Synovial cell production of IL-26 induces bone mineralization in spondyloarthritis. Journal of Molecular Medicine, 2017, 95, 779-787.	1.7	19
40	Malignant T cells activate endothelial cells via IL-17 F. Blood Cancer Journal, 2017, 7, e586-e586.	2.8	12
41	Investigating heredity in cutaneous T-cell lymphoma in a unique cohort of Danish twins. Blood Cancer Journal, 2017, 7, e517-e517.	2.8	24
42	A novel BLK-induced tumor model. Tumor Biology, 2017, 39, 101042831771419.	0.8	19
43	Butyrate and propionate inhibit antigen-specific CD8+ T cell activation by suppressing IL-12 production by antigen-presenting cells. Scientific Reports, 2017, 7, 14516.	1.6	77
44	Malignant inflammation in cutaneous Tâ€cell lymphomaâ€"a hostile takeover. Seminars in Immunopathology, 2017, 39, 269-282.	2.8	110
45	Rapid allergenâ€induced interleukinâ€17 and interferonâ€Î³ secretion by skinâ€resident memory CD8 ⁺ T cells. Contact Dermatitis, 2017, 76, 218-227.	0.8	71
46	Characterizing the O-glycosylation landscape of human plasma, platelets, and endothelial cells. Blood Advances, 2017, 1, 429-442.	2.5	121
47	Vitamin D Counteracts Mycobacterium tuberculosis-Induced Cathelicidin Downregulation in Dendritic Cells and Allows Th1 Differentiation and IFNÎ ³ Secretion. Frontiers in Immunology, 2017, 8, 656.	2.2	37
48	Analysis of CTCL cell lines reveals important differences between mycosis fungoides/Sézary syndrome <i>vs. HTLV-1+</i> leukemic cell lines. Oncotarget, 2017, 8, 95981-95998.	0.8	44
49	Staphylococcal enterotoxin A (SEA) stimulates STAT3 activation and IL-17 expression in cutaneous T-cell lymphoma. Blood, 2016, 127, 1287-1296.	0.6	86
50	The Expression of IL-21 Is Promoted by MEKK4 in Malignant T Cells and Associated with Increased Progression Risk in Cutaneous T-Cell Lymphoma. Journal of Investigative Dermatology, 2016, 136, 866-869.	0.3	4
51	Investigating potential exogenous tumor initiating and promoting factors for Cutaneous T-Cell Lymphomas (CTCL), a rare skin malignancy. Oncolmmunology, 2016, 5, e1175799.	2.1	36
52	STAT5 induces miR-21 expression in cutaneous T cell lymphoma. Oncotarget, 2016, 7, 45730-45744.	0.8	45
53	The effect of short-chain fatty acids on human monocyte-derived dendritic cells. Scientific Reports, 2015, 5, 16148.	1.6	269
54	NKG2D-Dependent Activation of Dendritic Epidermal T Cells in Contact Hypersensitivity. Journal of Investigative Dermatology, 2015, 135, 1311-1319.	0.3	30

#	Article	IF	CITATIONS
55	<scp>MID</scp> 2 can substitute for <scp>MID</scp> 1 and control exocytosis of lytic granules in cytotoxic T cells. Apmis, 2015, 123, 682-687.	0.9	4
56	Malignant T Cells Secrete Galectins and Induce Epidermal Hyperproliferation and Disorganized Stratification in a Skin Model of Cutaneous T-Cell Lymphoma. Journal of Investigative Dermatology, 2015, 135, 238-246.	0.3	28
57	Ectopic expression of a novel CD22 splice-variant regulates survival and proliferation in malignant T cells from cutaneous T cell lymphoma (CTCL) patients. Oncotarget, 2015, 6, 14374-14384.	0.8	4
58	Malignant T cells express lymphotoxin \hat{l}_{\pm} and drive endothelial activation in cutaneous T cell lymphoma. Oncotarget, 2015, 6, 15235-15249.	0.8	27
59	Jak3, STAT3, and STAT5 inhibit expression of miR-22, a novel tumor suppressor microRNA, in cutaneous T-Cell lymphoma. Oncotarget, 2015, 6, 20555-20569.	0.8	78
60	Human CD4+ T cells require exogenous cystine for glutathione and DNA synthesis. Oncotarget, 2015, 6, 21853-21864.	0.8	33
61	Vitamin D Up-Regulates the Vitamin D Receptor by Protecting It from Proteasomal Degradation in Human CD4+ T Cells. PLoS ONE, 2014, 9, e96695.	1.1	65
62	Vitamin D-binding protein controls T cell responses to vitamin D. BMC Immunology, 2014, 15, 35.	0.9	100
63	IL-15 and IL-17F are differentially regulated and expressed in mycosis fungoides (MF). Cell Cycle, 2014, 13, 1306-1312.	1.3	27
64	Immature truncated O-glycophenotype of cancer directly induces oncogenic features. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E4066-75.	3.3	251
65	B-lymphoid tyrosine kinase (Blk) is an oncogene and a potential target for therapy with dasatinib in cutaneous T-cell lymphoma (CTCL). Leukemia, 2014, 28, 2109-2112.	3.3	39
66	Analysis of STAT4 expression in cutaneous T-cell lymphoma (CTCL) patients and patient-derived cell lines. Cell Cycle, 2014, 13, 2975-2982.	1.3	62
67	Ectopic expression of embryonic stem cell and other developmental genes in cutaneous T-cell lymphoma. Oncolmmunology, 2014, 3, e970025.	2.1	38
68	Staphylococcal enterotoxins stimulate lymphoma-associated immune dysregulation. Blood, 2014, 124, 761-770.	0.6	59
69	IL- $1\hat{l}^2\hat{a}$ \in "Dependent Activation of Dendritic Epidermal T Cells in Contact Hypersensitivity. Journal of Immunology, 2014, 192, 2975-2983.	0.4	69
70	Midline 1 controls polarization and migration of murine cytotoxic T cells. Immunity, Inflammation and Disease, 2014, 2, 262-271.	1.3	6
71	STAT3 activation and infiltration of eosinophil granulocytes in mycosis fungoides. Anticancer Research, 2014, 34, 5277-86.	0.5	15
72	MicroRNA expression in early mycosis fungoides is distinctly different from atopic dermatitis and advanced cutaneous T-cell lymphoma. Anticancer Research, 2014, 34, 7207-17.	0.5	55

#	Article	IF	Citations
73	Functional characterization of Foxp3-specific spontaneous immune responses. Leukemia, 2013, 27, 2332-2340.	3.3	23
74	Bacterial Toxins Fuel Disease Progression in Cutaneous T-Cell Lymphoma. Toxins, 2013, 5, 1402-1421.	1.5	66
75	Expression of miRâ€155 and miRâ€126 <i>in situ</i> in cutaneous Tâ€cell lymphoma. Apmis, 2013, 121, 1020-10	024.9	25
76	STAT5-mediated expression of oncogenic miR-155 in cutaneous T-cell lymphoma. Cell Cycle, 2013, 12, 1939-1947.	1.3	123
77	Elucidating the role of interleukin-17F in cutaneous T-cell lymphoma. Blood, 2013, 122, 943-950.	0.6	78
78	Activated human CD4+ T cells express transporters for both cysteine and cystine. Scientific Reports, 2012, 2, 266.	1.6	85
79	Expression Patterns of the Immunosuppressive Proteins PD-1/CD279 and PD-L1/CD274 at Different Stages of Cutaneous T-Cell Lymphoma/Mycosis Fungoides. American Journal of Dermatopathology, 2012, 34, 126-128.	0.3	105
80	Diagnostic microRNA profiling in cutaneous T-cell lymphoma (CTCL). Blood, 2011, 118, 5891-5900.	0.6	237
81	Malignant Cutaneous T-Cell Lymphoma Cells Express IL-17 Utilizing the Jak3/Stat3 Signaling Pathway. Journal of Investigative Dermatology, 2011, 131, 1331-1338.	0.3	94
82	COX-2-dependent PGE2 acts as a growth factor in mycosis fungoides (MF). Leukemia, 2010, 24, 1179-1185.	3.3	38
83	Ectopic expression of B-lymphoid kinase in cutaneous T-cell lymphoma. Blood, 2009, 113, 5896-5904.	0.6	57
84	Malignant Tregs express low molecular splice forms of FOXP3 in Sézary syndrome. Leukemia, 2008, 22, 2230-2239.	3.3	82
85	\hat{I}^3 c-Signaling Cytokines Induce a Regulatory T Cell Phenotype in Malignant CD4+ T Lymphocytes. Journal of Immunology, 2008, 181, 2506-2512.	0.4	56
86	Nonmalignant T cells stimulate growth of T-cell lymphoma cells in the presence of bacterial toxins. Blood, 2007, 109, 3325-3332.	0.6	66
87	FOXP3+ regulatory T cells in cutaneous T-cell lymphomas: association with disease stage and survival. Leukemia, 2007, 21, 2512-2518.	3.3	138
88	Jak3- and JNK-dependent vascular endothelial growth factor expression in cutaneous T-cell lymphoma. Leukemia, 2006, 20, 1759-1766.	3.3	103
89	Constitutive SOCS-3 expression protects T-cell lymphoma against growth inhibition by IFNα. Leukemia, 2005, 19, 209-213.	3.3	76
90	In vivo activation of STAT3 in cutaneous T-cell lymphoma. Evidence for an antiapoptotic function of STAT3. Leukemia, 2004, 18, 1288-1295.	3.3	150

#	Article	IF	CITATIONS
91	Protein Phosphatase 2A (PP2A) Regulates Interleukin-4-mediated STAT6 Signaling. Journal of Biological Chemistry, 2003, 278, 2787-2791.	1.6	26
92	Inhibition of protein phosphatase 2A induces serine/threonine phosphorylation, subcellular redistribution, and functional inhibition of STAT3. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 10620-10625.	3.3	133