
Xavier Milhet

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3836013/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Timeâ€Resolved Evolution of the 3D Nanoporous Structure of Sintered Ag by Xâ€Ray Nanotomography: Role of the Interface with a Copper Substrate. Advanced Engineering Materials, 2022, 24, 2100583.	3.5	4
2	Laser-driven shocks to explore the effects of aging on the adhesion of silver sintered on copper substrate. Journal of Adhesion Science and Technology, 2022, 36, 1346-1363.	2.6	2
3	Study of the adhesion of a sintered Ag joint on a Cu substrate using laser shocks. Influence of aging. , 2021, , .		0
4	Evolution of the Thermal Conductivity of Sintered Silver Joints with their Porosity Predicted by the Finite Element Analysis of Real 3D Microstructures. Journal of Electronic Materials, 2018, 47, 4170-4176.	2.2	10
5	Evolution of the nanoporous microstructure of sintered Ag at high temperature using in-situ X-ray nanotomography. Acta Materialia, 2018, 156, 310-317.	7.9	22
6	Synthesis and characterization of a new (Ti 1-Îμ ,Cu Îμ) 3 (Al,Cu)C 2 MAX phase solid solution. Journal of the European Ceramic Society, 2017, 37, 459-466.	5.7	37
7	Ageing sintered silver: Relationship between tensile behavior, mechanical properties and the nanoporous structure evolution. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 669, 379-386.	5.6	79
8	Influence of the Porous Microstructure on the Elastic Properties of Sintered Ag Paste as Replacement Material for Die Attachment. Journal of Electronic Materials, 2015, 44, 3948-3956.	2.2	32
9	Quantitative characterization of porosity and determination of elastic modulus for sintered micro-silver joints. Journal of Materials Processing Technology, 2015, 225, 19-23.	6.3	68
10	Modeling of Young׳s modulus variations with temperature of Ni and oxidized Ni using a magneto-mechanical approach. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2015, 633, 76-91.	5.6	23
11	Mechanical Properties of Sintered Ag as a New Material for Die Bonding: Influence of the Density. Journal of Electronic Materials, 2014, 43, 4510-4514.	2.2	52
12	On the Dissolution of the γ′ Phase at the Dendritic Scale in a Rhenium-Containing Nickel-Based Single Crystal Superalloy After High Temperature Exposure. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2013, 44, 2031-2040.	2.2	9
13	Effect of oxidation on the elastic properties of ferromagnetic metals. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2013, 571, 92-94.	5.6	5
14	Hardness cartography to increase the nanoindentation resolution in heterogeneous materials: Application to a Ni-based single-crystal superalloy. Scripta Materialia, 2012, 66, 77-80.	5.2	35
15	On the influence of the dendritic structure on the creep behavior of a Re-containing superalloy at high temperature/low stress. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2012, 546, 139-145.	5.6	30
16	On the role of the internal stress during non-isothermal creep life of a first generation nickel based single crystal superalloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2010, 527, 2280-2288.	5.6	13
17	Very high temperature creep behavior of a single crystal Ni-based superalloy under complex thermal cycling conditions. Philosophical Magazine Letters, 2010, 90, 611-620.	1.2	64
18	Bulk and coated materials shear modulus determination by means of torsional resonant method. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2009, 521-522, 303-306.	5.6	20

XAVIER MILHET

#	Article	IF	CITATIONS
19	γ′-phase morphology of Ni-based single crystal superalloys as an indicator of the stress concentration in the vicinity of pores. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2009, 501, 61-69.	5.6	26
20	Simulation of Very High Temperature Overheating During Isothermal Creep of Single Crystal Niâ€Base Superalloy. Advanced Engineering Materials, 2008, 10, 56-61.	3.5	28
21	Consolidation of iron powders through the influence of phosphate thin films. Journal of Materials Processing Technology, 2008, 205, 151-159.	6.3	9
22	Non-Isothermal Creep Behavior of a Second Generation Ni-Based Single Crystal Superalloy: Experimental Characterization and Modeling. , 2008, , .		7
23	Non-isothermal creep at very high temperature of the nickel-based single crystal superalloy MC2. Acta Materialia, 2007, 55, 6250-6259.	7.9	90
24	Effect of very high temperature short exposures on the dissolution of the γ′ phase in single crystal MC2 superalloy. Journal of Materials Science, 2007, 42, 7780-7786.	3.7	82
25	In situ tensile tests in SEM of sputtered CNx films deposited on Ti6Al4V substrate: effect of film thickness and plasma surface pretreatment. Thin Solid Films, 2005, 482, 324-329.	1.8	3
26	Stress heterogeneity of thermally grown polycrystalline nickel oxide layers. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2005, 395, 22-26.	5.6	5
27	TEM observations of the coexistence of perfect and dissociated dislocations in SiC under high stress. Physica Status Solidi C: Current Topics in Solid State Physics, 2005, 2, 1987-1991.	0.8	15
28	Titania Deposition on PMR-15. Chemistry of Materials, 2005, 17, 3205-3213.	6.7	22
29	Carbon nitride thin films as protective coatings for biomaterials: synthesis, mechanical and biocompatibility characterizations. Diamond and Related Materials, 2003, 12, 1066-1069.	3.9	34
30	Microstructures of 4HÂSiC single crystals deformed under very high stresses. Journal of Physics Condensed Matter, 2002, 14, 12961-12966.	1.8	11
31	Dislocation Sub-Boundaries in As-Grown ?-Silicon Nitride. Physica Status Solidi A, 2002, 193, 377-389.	1.7	1
32	Characterization of room-temperature plastic deformation of ß-Si3N4by atomic force microscopy and transmission electron microscopy. Philosophical Magazine Letters, 2001, 81, 623-629.	1.2	6
33	Glide dislocations in beta silicon nitride. Philosophical Magazine Letters, 1999, 79, 19-24.	1.2	8