Clementina Sansone

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3835913/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Carotenoids from Marine Organisms: Biological Functions and Industrial Applications. Antioxidants, 2017, 6, 96.	2.2	250
2	Microalgal Derivatives as Potential Nutraceutical and Food Supplements for Human Health: A Focus on Cancer Prevention and Interception. Nutrients, 2019, 11, 1226.	1.7	168
3	On the Neuroprotective Role of Astaxanthin: New Perspectives?. Marine Drugs, 2018, 16, 247.	2.2	139
4	Marine microorganisms as a promising and sustainable source of bioactive molecules. Marine Environmental Research, 2017, 128, 58-69.	1.1	136
5	Microalgal Metallothioneins and Phytochelatins and Their Potential Use in Bioremediation. Frontiers in Microbiology, 2020, 11, 517.	1.5	99
6	The green microalga Tetraselmis suecica reduces oxidative stress and induces repairing mechanisms in human cells. Scientific Reports, 2017, 7, 41215.	1.6	88
7	Challenging microalgal vitamins for human health. Microbial Cell Factories, 2020, 19, 201.	1.9	85
8	Promises and Challenges of Microalgal Antioxidant Production. Antioxidants, 2019, 8, 199.	2.2	76
9	Insights into phenolic compounds from microalgae: structural variety and complex beneficial activities from health to nutraceutics. Critical Reviews in Biotechnology, 2021, 41, 155-171.	5.1	60
10	Development and Application of a Novel SPE-Method for Bioassay-Guided Fractionation of Marine Extracts. Marine Drugs, 2015, 13, 5736-5749.	2.2	59
11	Diatom-Derived Polyunsaturated Aldehydes Activate Cell Death in Human Cancer Cell Lines but Not Normal Cells. PLoS ONE, 2014, 9, e101220.	1.1	58
12	Antioxidant and Photoprotection Networking in the Coastal Diatom Skeletonema marinoi. Antioxidants, 2019, 8, 154.	2.2	56
13	Bacteria, Fungi and Microalgae for the Bioremediation of Marine Sediments Contaminated by Petroleum Hydrocarbons in the Omics Era. Microorganisms, 2021, 9, 1695.	1.6	55
14	A new marine-derived sulfoglycolipid triggers dendritic cell activation and immune adjuvant response. Scientific Reports, 2017, 7, 6286.	1.6	46
15	Pseudoalteromonas haloplanktis TAC125 produces 4-hydroxybenzoic acid that induces pyroptosis in human A459 lung adenocarcinoma cells. Scientific Reports, 2018, 8, 1190.	1.6	41
16	Marine Algal Antioxidants as Potential Vectors for Controlling Viral Diseases. Antioxidants, 2020, 9, 392.	2.2	41
17	Biosurfactant-induced remediation of contaminated marine sediments: Current knowledge and future perspectives. Marine Environmental Research, 2018, 137, 196-205.	1.1	39
18	Degradation of Hydrocarbons and Heavy Metal Reduction by Marine Bacteria in Highly Contaminated Sediments. Microorganisms, 2020, 8, 1402.	1.6	34

CLEMENTINA SANSONE

#	Article	IF	CITATIONS
19	Natural Compounds of Marine Origin as Inducers of Immunogenic Cell Death (ICD): Potential Role for Cancer Interception and Therapy. Cells, 2021, 10, 231.	1.8	34
20	Highly Contaminated Marine Sediments Can Host Rare Bacterial Taxa Potentially Useful for Bioremediation. Frontiers in Microbiology, 2021, 12, 584850.	1.5	33
21	Role of nutrient concentrations and water movement on diatom's productivity in culture. Scientific Reports, 2019, 9, 1479.	1.6	28
22	Insights into the biosynthesis pathway of phenolic compounds in microalgae. Computational and Structural Biotechnology Journal, 2022, 20, 1901-1913.	1.9	27
23	Bioinformatics for Marine Products: An Overview of Resources, Bottlenecks, and Perspectives. Marine Drugs, 2019, 17, 576.	2.2	26
24	MMP-9 and IL- $1\hat{1}^2$ as Targets for Diatoxanthin and Related Microalgal Pigments: Potential Chemopreventive and Photoprotective Agents. Marine Drugs, 2021, 19, 354.	2.2	21
25	Prophylaxis of Non-communicable Diseases: Why Fruits and Vegetables may be Better Chemopreventive Agents than Dietary Supplements Based on Isolated Phytochemicals?. Current Pharmaceutical Design, 2019, 25, 1847-1860.	0.9	21
26	The Marine Dinoflagellate Alexandrium minutum Activates a Mitophagic Pathway in Human Lung Cancer Cells. Marine Drugs, 2018, 16, 502.	2.2	19
27	An In Vitro Model to Investigate the Role of Helicobacter pylori in Type 2 Diabetes, Obesity, Alzheimer's Disease and Cardiometabolic Disease. International Journal of Molecular Sciences, 2020, 21, 8369.	1.8	17
28	Effects of walnut husk washing waters and their phenolic constituents on horticultural species. Environmental Science and Pollution Research, 2012, 19, 3299-3306.	2.7	15
29	The Marine Dinoflagellate Alexandrium andersoni Induces Cell Death in Lung and Colorectal Tumor Cell Lines. Marine Biotechnology, 2018, 20, 343-352.	1.1	15
30	Marine Algal Antioxidants. Antioxidants, 2020, 9, 206.	2.2	15
31	An Extract of Olive Mill Wastewater Downregulates Growth, Adhesion and Invasion Pathways in Lung Cancer Cells: Involvement of CXCR4. Nutrients, 2020, 12, 903.	1.7	15
32	The Sea Urchin Arbacia lixula: A Novel Natural Source of Astaxanthin. Marine Drugs, 2017, 15, 187.	2.2	14
33	Food Modulation Controls Astaxanthin Accumulation in Eggs of the Sea Urchin Arbacia lixula. Marine Drugs, 2018, 16, 186.	2.2	14
34	Cardiovascular Active Peptides of Marine Origin with ACE Inhibitory Activities: Potential Role as Anti-Hypertensive Drugs and in Prevention of SARS-CoV-2 Infection. International Journal of Molecular Sciences, 2020, 21, 8364.	1.8	14
35	Potent Cytotoxic Analogs of Amphidinolides from the Atlantic Octocoral Stragulum bicolor. Marine Drugs, 2019, 17, 58.	2.2	10
36	Biological and chemical characterization of new isolated halophilic microorganisms from saltern ponds of Trapani, Sicily. Algal Research, 2021, 54, 102192.	2.4	9

CLEMENTINA SANSONE

#	Article	IF	CITATIONS
37	Identification of Cell Death Genes in Sea Urchin <i>Paracentrotus lividus</i> and Their Expression Patterns during Embryonic Development. Genome Biology and Evolution, 2019, 11, 586-596.	1.1	8
38	The Recent Advanced in Microalgal Phytosterols: Bioactive Ingredients Along With Human-Health Driven Potential Applications. Food Reviews International, 0, , 1-20.	4.3	8
39	Metagenome-assembled genome (MAG) of <i>Oceancaulis alexandrii</i> NP7 isolated from Mediterranean Sea polluted marine sediments and its bioremediation potential. G3: Genes, Genomes, Genetics, 2021, 11, .	0.8	6
40	Microalgal Co-Cultivation Prospecting to Modulate Vitamin and Bioactive Compounds Production. Antioxidants, 2021, 10, 1360.	2.2	6
41	New In Vitro Model of Oxidative Stress: Human Prostate Cells Injured with 2,2-diphenyl-1-picrylhydrazyl (DPPH) for the Screening of Antioxidants. International Journal of Molecular Sciences, 2020, 21, 8707.	1.8	4
42	Diatom-Derived Polyunsaturated Aldehydes Activate Similar Cell Death Genes in Two Different Systems: Sea Urchin Embryos and Human Cells. International Journal of Molecular Sciences, 2020, 21, 5201.	1.8	4
43	Marine Fungi as Potential Eco-Sustainable Resource for Precious Metals Recovery from Electronic Waste. Waste and Biomass Valorization, 0, , 1.	1.8	3
44	Probing the Therapeutic Potential of Marine Phyla by SPE Extraction. Marine Drugs, 2021, 19, 640.	2.2	3
45	In Vitro Evaluation of Antioxidant Potential of the Invasive Seagrass Halophila stipulacea. Marine Drugs, 2021, 19, 37.	2.2	2
46	Abstract 18: The CXCR4/CXCL12 axis is a target of a polyphenol extract from olive oil processing with potential cancer prevention and interception activities. Cancer Research, 2020, 80, 18-18.	0.4	1
47	Genome Sequence of an <i>Alkaliphilus</i> Species Isolated from Historically Contaminated Sediments of the Gulf of Naples (Mediterranean Sea). Microbiology Resource Announcements, 2021, 10, .	0.3	Ο