Yoshio Koyanagi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3835842/publications.pdf

Version: 2024-02-01

41 papers 2,787 citations

361413 20 h-index 377865 34 g-index

42 all docs 42 docs citations

times ranked

42

5037 citing authors

#	Article	IF	CITATIONS
1	NOD/SCID/ \hat{I}^3 cnull mouse: an excellent recipient mouse model for engraftment of human cells. Blood, 2002, 100, 3175-3182.	1.4	1,322
2	SARS-CoV-2 ORF3b Is a Potent Interferon Antagonist Whose Activity Is Increased by a Naturally Occurring Elongation Variant. Cell Reports, 2020, 32, 108185.	6.4	345
3	Cell-to-cell infection by HIV contributes over half of virus infection. ELife, 2015, 4, .	6.0	137
4	APOBEC3D and APOBEC3F Potently Promote HIV-1 Diversification and Evolution in Humanized Mouse Model. PLoS Pathogens, 2014, 10, e1004453.	4.7	79
5	Remarkable Lethal G-to-A Mutations in <i>vif-</i> Proficient HIV-1 Provirus by Individual APOBEC3 Proteins in Humanized Mice. Journal of Virology, 2010, 84, 9546-9556.	3.4	77
6	Type I Interferon Responses by HIV-1 Infection: Association with Disease Progression and Control. Frontiers in Immunology, 2017, 8, 1823.	4.8	72
7	Vpu Augments the Initial Burst Phase of HIV-1 Propagation and Downregulates BST2 and CD4 in Humanized Mice. Journal of Virology, 2012, 86, 5000-5013.	3.4	65
8	N4BP1 restricts HIV-1 and its inactivation by MALT1 promotes viral reactivation. Nature Microbiology, 2019, 4, 1532-1544.	13.3	61
9	Selective infection of CD4+ effector memory T lymphocytes leads to preferential depletion of memory T lymphocytes in R5 HIV-1-infected humanized NOD/SCID/IL-2Rγnull mice. Virology, 2009, 394, 64-72.	2.4	59
10	HIV-1 Vpr Accelerates Viral Replication during Acute Infection by Exploitation of Proliferating CD4+ T Cells In Vivo. PLoS Pathogens, 2013, 9, e1003812.	4.7	49
11	A High Excision Potential of TALENs for Integrated DNA of HIV-Based Lentiviral Vector. PLoS ONE, 2015, 10, e0120047.	2.5	48
12	Dynamics of memory and $na\tilde{A}$ ve CD8+ T lymphocytes in humanized NOD/SCID/IL- $2R\hat{I}^3$ null mice infected with CCR5-tropic HIV-1. Vaccine, 2010, 28, B32-B37.	3.8	44
13	A conflict of interest: the evolutionary arms race between mammalian APOBEC3 and lentiviral Vif. Retrovirology, 2017, 14, 31.	2.0	44
14	Human-Specific Adaptations in Vpu Conferring Anti-tetherin Activity Are Critical for Efficient Early HIV-1 Replication InAVivo. Cell Host and Microbe, 2018, 23, 110-120.e7.	11.0	43
15	HIV-1 competition experiments in humanized mice show that APOBEC3H imposes selective pressure and promotes virus adaptation. PLoS Pathogens, 2017, 13, e1006348.	4.7	41
16	Broad-spectrum antiviral agents: secreted phospholipase A2 targets viral envelope lipid bilayers derived from the endoplasmic reticulum membrane. Scientific Reports, 2017, 7, 15931.	3.3	38
17	Endogenous retroviruses drive KRAB zinc-finger protein family expression for tumor suppression. Science Advances, 2020, 6, .	10.3	36
18	Functional mutations in spike glycoprotein of Zaire ebolavirus associated with an increase in infection efficiency. Genes To Cells, 2017, 22, 148-159.	1.2	29

#	Article	IF	CITATIONS
19	Dynamics and mechanisms of clonal expansion of HIV-1-infected cells in a humanized mouse model. Scientific Reports, 2017, 7, 6913.	3.3	24
20	Resistance of SARS-CoV-2 variants to neutralization by antibodies induced in convalescent patients with COVID-19. Cell Reports, 2021, 36, 109385.	6.4	23
21	Experimental Adaptive Evolution of Simian Immunodeficiency Virus SIVcpz to Pandemic Human Immunodeficiency Virus Type 1 by Using a Humanized Mouse Model. Journal of Virology, 2018, 92, .	3.4	21
22	Comparative Description of the Expression Profile of Interferon-Stimulated Genes in Multiple Cell Lineages Targeted by HIV-1 Infection. Frontiers in Microbiology, 2019, 10, 429.	3.5	21
23	Different effects of two mutations on the infectivity of Ebola virus glycoprotein in nine mammalian species. Journal of General Virology, 2018, 99, 181-186.	2.9	21
24	The Hematopoietic Cell-Specific Rho GTPase Inhibitor ARHGDIB/D4GDI Limits HIV Type 1 Replication. AIDS Research and Human Retroviruses, 2012, 28, 913-922.	1.1	20
25	A role for gorilla APOBEC3G in shaping lentivirus evolution including transmission to humans. PLoS Pathogens, 2020, 16, e1008812.	4.7	16
26	M-Sec facilitates intercellular transmission of HIV-1 through multiple mechanisms. Retrovirology, 2020, 17, 20.	2.0	14
27	Multiomics Investigation Revealing the Characteristics of HIV-1-Infected Cells InÂVivo. Cell Reports, 2020, 32, 107887.	6.4	9
28	Various plus unique: Viral protein U as a plurifunctional protein for HIV-1 replication. Experimental Biology and Medicine, 2017, 242, 850-858.	2.4	8
29	New World feline APOBEC3 potently controls inter-genus lentiviral transmission. Retrovirology, 2018, 15, 31.	2.0	7
30	A naturally occurring feline APOBEC3 variant that loses anti-lentiviral activity by lacking two amino acid residues. Journal of General Virology, 2018, 99, 704-709.	2.9	6
31	Comprehensive Investigation on the Interplay between Feline APOBEC3Z3 Proteins and Feline Immunodeficiency Virus Vif Proteins. Journal of Virology, 2021, 95, e0017821.	3.4	3
32	CAGE-Seq Reveals that HIV-1 Latent Infection Does Not Trigger Unique Cellular Responses in a Jurkat T Cell Model. Journal of Virology, 2021, 95, .	3.4	1
33	Development of 7SK snRNA Mimics That Inhibit HIV Transcription. ChemMedChem, 2021, 16, 3181-3184.	3.2	1
34	Antithetic effect of interferon- \hat{l}_{\pm} on cell-free and cell-to-cell HIV-1 infection. PLoS Computational Biology, 2022, 18, e1010053.	3.2	1
35	Quantifying the antiviral effect of APOBEC3 on HIV-1 infection in humanized mouse model. Journal of Theoretical Biology, 2020, 498, 110295.	1.7	0
36	HIVâ€1 tracing method of systemic viremia in vivo using an artificially mutated virus pool. Microbiology and Immunology, 2021, 65, 17-27.	1.4	0

#	Article	lF	CITATIONS
37	A role for gorilla APOBEC3G in shaping lentivirus evolution including transmission to humans. , 2020, 16, e1008812.		O
38	A role for gorilla APOBEC3G in shaping lentivirus evolution including transmission to humans. , 2020, 16, e1008812.		O
39	A role for gorilla APOBEC3G in shaping lentivirus evolution including transmission to humans. , 2020, 16, e1008812.		O
40	A role for gorilla APOBEC3G in shaping lentivirus evolution including transmission to humans. , 2020, 16, e1008812.		O
41	A role for gorilla APOBEC3G in shaping lentivirus evolution including transmission to humans. , 2020, 16, e1008812.		0