Changshen Ning

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3835768/publications.pdf

Version: 2024-02-01

236925 330143 1,617 62 25 37 citations h-index g-index papers 62 62 62 892 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Genetic Polymorphism and Zoonotic Potential of <i>Enterocytozoon bieneusi</i> Primates in China. Applied and Environmental Microbiology, 2014, 80, 1893-1898.	3.1	128
2	Predomination and New Genotypes of Enterocytozoon bieneusi in Captive Nonhuman Primates in Zoos in China: High Genetic Diversity and Zoonotic Significance. PLoS ONE, 2015, 10, e0117991.	2.5	104
3	Genetic Diversity in Enterocytozoon bieneusi Isolates from Dogs and Cats in China: Host Specificity and Public Health Implications. Journal of Clinical Microbiology, 2014, 52, 3297-3302.	3.9	103
4	Molecular survey of Enterocytozoon bieneusi in sheep and goats in China. Parasites and Vectors, 2016, 9, 23.	2.5	62
5	Cryptosporidium parvum IId family: clonal population and dispersal from Western Asia to other geographical regions. Scientific Reports, 2014, 4, 4208.	3.3	58
6	Zoonotic and host-adapted genotypes of Cryptosporidium spp., Giardia duodenalis and Enterocytozoon bieneusi in dairy cattle in Hebei and Tianjin, China. Veterinary Parasitology, 2017, 248, 68-73.	1.8	58
7	Multilocus typing of Cryptosporidium spp. and Giardia duodenalis from non-human primates in China. International Journal for Parasitology, 2014, 44, 1039-1047.	3.1	51
8	<i>Enterocytozoon bieneusi</i> Genotypes in Grazing Horses in China and their Zoonotic Transmission Potential. Journal of Eukaryotic Microbiology, 2016, 63, 591-597.	1.7	47
9	Detection and Phylogenetic Characterization of Anaplasma capra: An Emerging Pathogen in Sheep and Goats in China. Frontiers in Cellular and Infection Microbiology, 2018, 8, 283.	3.9	46
10	Multilocus sequence typing of Enterocytozoon bieneusi in nonhuman primates in China. Veterinary Parasitology, 2014, 200, 13-23.	1.8	42
11	First molecular characterization of enteric protozoa and the human pathogenic microsporidian, Enterocytozoon bieneusi, in captive snakes in China. Parasitology Research, 2014, 113, 3041-3048.	1.6	39
12	High prevalence of Enterocytozoon bieneusi zoonotic genotype D in captive golden snub-nosed monkey (Rhinopithecus roxellanae) in zoos in China. BMC Veterinary Research, 2017, 13, 158.	1.9	38
13	Multi-locus analysis of Giardia duodenalis from nonhuman primates kept in zoos in China: Geographical segregation and host-adaptation of assemblage B isolates. Infection, Genetics and Evolution, 2015, 30, 82-88.	2.3	37
14	Occurrence, Molecular Characterization, and Assessment of Zoonotic Risk of <i>Cryptosporidium</i> spp., <i>Giardia duodenalis</i> , and <i>Enterocytozoon bieneusi</i> in Pigs in Henan, Central China. Journal of Eukaryotic Microbiology, 2018, 65, 893-901.	1.7	36
15	Prevalence, molecular characterization and zoonotic potential of Cryptosporidium spp. in goats in Henan and Chongqing, China. Experimental Parasitology, 2014, 142, 11-16.	1.2	35
16	Molecular and phylogenetic analysis of <i>Anaplasma </i> spp. in sheep and goats from six provinces of China. Journal of Veterinary Science, 2016, 17, 523.	1.3	32
17	Prevalence and genotyping of Giardia duodenalis isolated from sheep in Henan Province, central China. Infection, Genetics and Evolution, 2016, 39, 330-335.	2.3	31
18	Prevalence and multilocus genotyping of Cryptosporidium andersoni in dairy cattle and He cattle in Xinjiang, China. Infection, Genetics and Evolution, 2016, 44, 313-317.	2.3	31

#	Article	lF	CITATIONS
19	Dominance of Enterocytozoon bieneusi genotype J in dairy calves in Xinjiang, Northwest China. Parasitology International, 2017, 66, 960-963.	1.3	31
20	Prevalence and molecular characterization of Cryptosporidium spp. and Giardia duodenalis in deer in Henan and Jilin, China. Parasites and Vectors, 2018, 11, 239.	2.5	31
21	Occurrence and molecular characterization of Cryptosporidium spp., Giardia duodenalis, and Enterocytozoon bieneusi from Tibetan sheep in Gansu, China. Infection, Genetics and Evolution, 2018, 64, 46-51.	2.3	31
22	Identification of human pathogenic Enterocytozoon bieneusi, Cyclospora cayetanensis, and Cryptosporidium parvum on the surfaces of vegetables and fruits in Henan, China. International Journal of Food Microbiology, 2019, 307, 108292.	4.7	31
23	Prevalence and multilocus genotyping of Giardia duodenalis in dairy calves in Xinjiang, Northwestern China. Parasites and Vectors, 2016, 9, 546.	2.5	29
24	First molecular evidence of mixed infections of Anaplasma species in dogs in Henan, China. Ticks and Tick-borne Diseases, 2017, 8, 283-289.	2.7	29
25	New Genotypes of Enterocytozoon bieneusi Isolated from Sika Deer and Red Deer in China. Frontiers in Microbiology, 2017, 8, 879.	3.5	28
26	Prevalence of Zoonotic <i>Giardia duodenalis</i> Assemblage B and First Identification of Assemblage E in Rabbit Fecal Samples Isolates from Central China. Journal of Eukaryotic Microbiology, 2015, 62, 810-814.	1.7	26
27	Dogs as New Hosts for the Emerging Zoonotic Pathogen Anaplasma capra in China. Frontiers in Cellular and Infection Microbiology, 2019, 9, 394.	3.9	26
28	Multilocus Typing of $\langle i \rangle$ Enterocytozoon bieneusi $\langle i \rangle$ in Pig Reveals the High Prevalence, Zoonotic Potential, Host Adaptation and Geographical Segregation in China. Journal of Eukaryotic Microbiology, 2019, 66, 707-718.	1.7	25
29	Coccidia-Microbiota Interactions and Their Effects on the Host. Frontiers in Cellular and Infection Microbiology, 2021, 11, 751481.	3.9	22
30	Molecular Characterization of <i>Giardia duodenalis</i> and <i>Enterocytozoon bieneusi</i> Isolated from Tibetan Sheep and Tibetan Goats Under Natural Grazing Conditions in Tibet. Journal of Eukaryotic Microbiology, 2020, 67, 100-106.	1.7	21
31	Genetic characteristics and geographic segregation of Giardia duodenalis in dairy cattle from Guangdong Province, southern China. Infection, Genetics and Evolution, 2018, 66, 95-100.	2.3	20
32	MicroRNA expression profile of HCT-8 cells in the early phase of Cryptosporidium parvum infection. BMC Genomics, 2019, 20, 37.	2.8	20
33	Molecular identification and epidemiological comparison of Cryptosporidium spp. among different pig breeds in Tibet and Henan, China. BMC Veterinary Research, 2019, 15, 101.	1.9	19
34	Molecular characterization of hemotropic mycoplasmas (Mycoplasma ovis and  Candidatus) Tj ETQq0 0 0 rgB¯	「/Qyerloch	≀ 10 Tf 50 14
35	First molecular evidence for the presence of Anaplasma DNA in milk from sheep and goats in China. Parasitology Research, 2016, 115, 2789-2795.	1.6	17
36	The first detection of <i>Anaplasma capra</i> , an emerging zoonotic <i>Anaplasma</i> sp., in erythrocytes. Emerging Microbes and Infections, 2021, 10, 226-234.	6.5	17

#	Article	IF	CITATIONS
37	Prevalence, molecular epidemiology, and zoonotic potential of Entamoeba spp. in nonhuman primates in China. Infection, Genetics and Evolution, 2017, 54, 216-220.	2.3	15
38	Revisiting the infectivity and pathogenicity of Cryptosporidium avium provides new information on parasitic sites within the host. Parasites and Vectors, 2018, 11, 514.	2.5	13
39	Molecular characterization and distribution of Cryptosporidium spp., Giardia duodenalis, and Enterocytozoon bieneusi from yaks in Tibet, China. BMC Veterinary Research, 2019, 15, 417.	1.9	13
40	Development of duplex PCR for simultaneous detection of Theileria spp. and Anaplasma spp. in sheep and goats. Experimental Parasitology, 2017, 176, 1-7.	1.2	12
41	Multilocus genotyping of Giardia duodenalis isolated from patients in Egypt. Acta Tropica, 2019, 196, 66-71.	2.0	12
42	Cryptosporidium parvum upregulates miR-942-5p expression in HCT-8 cells via TLR2/TLR4-NF-κB signaling. Parasites and Vectors, 2020, 13, 435.	2.5	12
43	An in vitro model of infection of chicken embryos by Cryptosporidium baileyi. Experimental Parasitology, 2014, 147, 41-47.	1.2	11
44	A canine model of experimental infection with Cryptosporidium canis. Experimental Parasitology, 2018, 195, 19-23.	1.2	9
45	Molecular detection and phylogenetic analyses of Anaplasma spp. in Haemaphysalis longicornis from goats in four provinces of China. Scientific Reports, 2021, 11, 14155.	3.3	9
46	Rapid and sensitive detection of Anaplasma phagocytophilum using a newly developed recombinase polymerase amplification assay. Experimental Parasitology, 2019, 201, 21-25.	1.2	8
47	A Loop-Mediated Isothermal Amplification Assay Targeting 16S rRNA Gene for Rapid Detection of Anaplasma phagocytophilum Infection in Sheep and Goats. Journal of Parasitology, 2017, 103, 187.	0.7	7
48	Common occurrence of Theileria annulata and the first report of T. ovis in dairy cattle from Southern Xinjiang, China. Ticks and Tick-borne Diseases, 2018, 9, 1446-1450.	2.7	7
49	Molecular detection of Anaplasma spp. in dairy cattle in southern Xinjiang, China. Veterinary Parasitology: Regional Studies and Reports, 2020, 20, 100406.	0.5	7
50	A Multiplex PCR Detection Assay for the Identification of Clinically Relevant Anaplasma Species in Field Blood Samples. Frontiers in Microbiology, 2020, 11, 606.	3.5	7
51	Seasonal dynamics of Anaplasma spp. in goats in warm-temperate zone of China. Ticks and Tick-borne Diseases, 2021, 12, 101673.	2.7	7
52	First confirmed report of outbreak of theileriosis/anaplasmosis in a cattle farm in Henan, China. Acta Tropica, 2018, 177, 207-210.	2.0	7
53	Prevalence of Blastocystis infection in free-range Tibetan sheep and Tibetan goats in the Qinghai-Tibetan Plateau in China. One Health, 2021, 13, 100347.	3.4	7
54	The first report of Anaplasma phagocytophilum and a novel Theileria spp. co-infection in a South African giraffe. Parasitology International, 2016, 65, 347-351.	1.3	6

#	Article	IF	CITATIONS
55	A rapid, simple and sensitive loop-mediated isothermal amplification method to detect Anaplasma bovis in sheep and goats samples. Parasitology International, 2018, 67, 70-73.	1.3	6
56	The Novel Zoonotic Pathogen, Anaplasma capra, Infects Human Erythrocytes, HL-60, and TF-1 Cells In Vitro. Pathogens, 2021, 10, 600.	2.8	6
57	Novel Anaplasma Variants in Small Ruminants From Central China. Frontiers in Veterinary Science, 2020, 7, 580007.	2.2	4
58	Cryptosporidium parvum downregulates miR-181d in HCT-8 cells via the p50-dependent TLRs/NF-κB pathway. Veterinary Parasitology, 2022, 305, 109710.	1.8	4
59	Molecular detection and phylogeny of Anaplasma spp. closely related to Anaplasma phagocytophilum in small ruminants from China. Ticks and Tick-borne Diseases, 2022, 13, 101992.	2.7	4
60	Identification of Anaplasma spp. in Tian Shan wapiti deer (Cervus elaphus songaricus) in Xinjiang, China. International Journal for Parasitology: Parasites and Wildlife, 2021, 14, 157-160.	1.5	3
61	Duplex TaqMan real-time PCR assay for simultaneous detection and quantification of Anaplasma capra and Anaplasma phagocytophilum infection. Molecular and Cellular Probes, 2020, 49, 101487.	2.1	2
62	Development of a duplex PCR assay for detecting Theileria luwenshuni and Anaplasma phagocytophilum in sheep and goats. Experimental and Applied Acarology, 2021, 85, 319-330.	1.6	0