Ashutosh Agarwal

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3835554/publications.pdf Version: 2024-02-01

Δεμμτοεή Δελαλι

#	Article	IF	CITATIONS
1	Principle and applications of microbubble and nanobubble technology for water treatment. Chemosphere, 2011, 84, 1175-1180.	4.2	695
2	Advancement in technologies for the depolymerization of lignin. Fuel Processing Technology, 2018, 181, 115-132.	3.7	159
3	Remediation technologies for oil-contaminated sediments. Marine Pollution Bulletin, 2015, 101, 483-490.	2.3	77
4	Biofilm detachment by self-collapsing air microbubbles: a potential chemical-free cleaning technology for membrane biofouling. Journal of Materials Chemistry, 2012, 22, 2203-2207.	6.7	47
5	Chlorinated polyvinyl chloride (CPVC) assisted leaching of lithium and cobalt from spent lithium-ion battery in subcritical water. Journal of Hazardous Materials, 2020, 393, 122367.	6.5	30
6	Remediation of oil-contaminated sand with self-collapsing air microbubbles. Environmental Science and Pollution Research, 2016, 23, 23876-23883.	2.7	29
7	Removal of biofilms by intermittent low-intensity ultrasonication triggered bursting of microbubbles. Biofouling, 2014, 30, 359-365.	0.8	27
8	Production of Phenol-Rich Monomers from Kraft Lignin Hydrothermolysates in Basic-Subcritical Water over MoO ₃ /SBA-15 Catalyst. Energy & Fuels, 2018, 32, 11564-11575.	2.5	26
9	Effects of Temperature and Salt Catalysts on Depolymerization of Kraft Lignin to Aromatic Phenolic Compounds. Energy & Fuels, 2019, 33, 6390-6404.	2.5	26
10	Enhanced microbubbles assisted cleaning of diesel contaminated sand. Marine Pollution Bulletin, 2017, 124, 331-335.	2.3	19
11	Cleaning of biologically fouled membranes with self-collapsing microbubbles. Biofouling, 2013, 29, 69-76.	0.8	13
12	Ni(OH) ₂ Coated CoMn-layered double hydroxide nanowires as efficient water oxidation electrocatalysts. New Journal of Chemistry, 2022, 46, 2044-2052.	1.4	12
13	Hybrid microwave-ultrasound assisted catalyst-free depolymerization of Kraft lignin to bio-oil. Industrial Crops and Products, 2021, 162, 113300.	2.5	10
14	Upgrading of Kraft Lignin-Derived Bio-Oil over Hierarchical and Nonhierarchical Ni and/or Zn/HZSM5 Catalysts. Industrial & Engineering Chemistry Research, 2019, 58, 22791-22803.	1.8	6
15	Effect of Iron Concentration and Annealing Conditions on the Catalytic Performance of Co–Mn Spinel Oxides with a Unique Nanowire–Nanosheet Coexisting Structure for Water Oxidation. Energy & Fuels, 2022, 36, 7806-7815.	2.5	2