
## Alexandr A Kapralov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3835452/publications.pdf

Version: 2024-02-01



| #  | Article                                                                                                                                                                                          | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Oxidized arachidonic and adrenic PEs navigate cells to ferroptosis. Nature Chemical Biology, 2017, 13, 81-90.                                                                                    | 3.9  | 1,589     |
| 2  | Cytochrome c acts as a cardiolipin oxygenase required for release of proapoptotic factors. Nature Chemical Biology, 2005, 1, 223-232.                                                            | 3.9  | 1,088     |
| 3  | Cardiolipin externalization to the outer mitochondrial membrane acts as an elimination signal for mitophagy in neuronal cells. Nature Cell Biology, 2013, 15, 1197-1205.                         | 4.6  | 792       |
| 4  | PEBP1 Wardens Ferroptosis by Enabling Lipoxygenase Generation of Lipid Death Signals. Cell, 2017, 171, 628-641.e26.                                                                              | 13.5 | 589       |
| 5  | Peroxidase Activity and Structural Transitions of Cytochrome c Bound to Cardiolipin-Containing<br>Membranes. Biochemistry, 2006, 45, 4998-5009.                                                  | 1.2  | 346       |
| 6  | Redox lipid reprogramming commands susceptibility of macrophages and microglia to ferroptotic death. Nature Chemical Biology, 2020, 16, 278-290.                                                 | 3.9  | 299       |
| 7  | Biodegradation of Singleâ€Walled Carbon Nanotubes by Eosinophil Peroxidase. Small, 2013, 9, 2721-2729.                                                                                           | 5.2  | 171       |
| 8  | Phospholipase iPLA2β averts ferroptosis by eliminating a redox lipid death signal. Nature Chemical<br>Biology, 2021, 17, 465-476.                                                                | 3.9  | 168       |
| 9  | Pseudomonas aeruginosa utilizes host polyunsaturated phosphatidylethanolamines to trigger<br>theft-ferroptosis in bronchial epithelium. Journal of Clinical Investigation, 2018, 128, 4639-4653. | 3.9  | 159       |
| 10 | Impaired Clearance and Enhanced Pulmonary Inflammatory/Fibrotic Response to Carbon Nanotubes in<br>Myeloperoxidase-Deficient Mice. PLoS ONE, 2012, 7, e30923.                                    | 1.1  | 156       |
| 11 | NDPK-D (NM23-H4)-mediated externalization of cardiolipin enables elimination of depolarized mitochondria by mitophagy. Cell Death and Differentiation, 2016, 23, 1140-1151.                      | 5.0  | 147       |
| 12 | Lung Macrophages "Digest―Carbon Nanotubes Using a Superoxide/Peroxynitrite Oxidative Pathway.<br>ACS Nano, 2014, 8, 5610-5621.                                                                   | 7.3  | 127       |
| 13 | The "pro-apoptotic genies―get out of mitochondria: Oxidative lipidomics and redox activity of cytochrome c/cardiolipin complexes. Chemico-Biological Interactions, 2006, 163, 15-28.             | 1.7  | 96        |
| 14 | A mitochondria-targeted inhibitor of cytochrome c peroxidase mitigates radiation-induced death.<br>Nature Communications, 2011, 2, 497.                                                          | 5.8  | 91        |
| 15 | Enzymatic oxidative biodegradation of nanoparticles: Mechanisms, significance and applications.<br>Toxicology and Applied Pharmacology, 2016, 299, 58-69.                                        | 1.3  | 89        |
| 16 | Nitric Oxide Inhibits Peroxidase Activity of Cytochrome c· Cardiolipin Complex and Blocks Cardiolipin<br>Oxidation. Journal of Biological Chemistry, 2006, 281, 14554-14562.                     | 1.6  | 88        |
| 17 | Elucidating the contribution of mitochondrial glutathione to ferroptosis in cardiomyocytes. Redox<br>Biology, 2021, 45, 102021.                                                                  | 3.9  | 88        |
| 18 | Peroxidase Mechanism of Lipid-dependent Cross-linking of Synuclein with Cytochrome c. Journal of<br>Biological Chemistry, 2009, 284, 15951-15969.                                                | 1.6  | 86        |

| #  | Article                                                                                                                                                                                                                                  | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | The hydrogen-peroxide-induced radical behaviour in human cytochrome <i>c</i> –phospholipid<br>complexes: implications for the enhanced pro-apoptotic activity of the G41S mutant. Biochemical<br>Journal, 2013, 456, 441-452.            | 1.7 | 79        |
| 20 | Oxidatively modified phosphatidylserines on the surface of apoptotic cells are essential phagocytic<br>â€~eat-me' signals: cleavage and inhibition of phagocytosis by Lp-PLA2. Cell Death and Differentiation,<br>2014, 21, 825-835.     | 5.0 | 71        |
| 21 | Topography of tyrosine residues and their involvement in peroxidation of polyunsaturated cardiolipin<br>in cytochrome c/cardiolipin peroxidase complexes. Biochimica Et Biophysica Acta - Biomembranes, 2011,<br>1808, 2147-2155.        | 1.4 | 64        |
| 22 | Phosphorylation of Cytochrome c Threonine 28 Regulates Electron Transport Chain Activity in Kidney.<br>Journal of Biological Chemistry, 2017, 292, 64-79.                                                                                | 1.6 | 55        |
| 23 | Interactions of cardiolipin and lyso-cardiolipins with cytochrome c and tBid: conflict or assistance in apoptosis. Cell Death and Differentiation, 2007, 14, 872-875.                                                                    | 5.0 | 50        |
| 24 | Designing inhibitors of cytochrome c/cardiolipin peroxidase complexes: mitochondria-targeted imidazole-substituted fatty acids. Free Radical Biology and Medicine, 2014, 71, 221-230.                                                    | 1.3 | 40        |
| 25 | Direct Mapping of Phospholipid Ferroptotic Death Signals in Cells and Tissues by Gas Cluster Ion Beam<br>Secondary Ion Mass Spectrometry (GCIBâ€SIMS). Angewandte Chemie - International Edition, 2021, 60,<br>11784-11788.              | 7.2 | 38        |
| 26 | Nano-Gold Corking and Enzymatic Uncorking of Carbon Nanotube Cups. Journal of the American<br>Chemical Society, 2015, 137, 675-684.                                                                                                      | 6.6 | 36        |
| 27 | Redox (phospho)lipidomics of signaling in inflammation and programmed cell death. Journal of<br>Leukocyte Biology, 2019, 106, 57-81.                                                                                                     | 1.5 | 33        |
| 28 | Peroxidase activation of cytoglobin by anionic phospholipids: Mechanisms and consequences.<br>Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2016, 1861, 391-401.                                                 | 1.2 | 30        |
| 29 | Molecular Design of New Inhibitors of Peroxidase Activity of Cytochrome <i>c</i> /Cardiolipin<br>Complexes: Fluorescent Oxadiazole-Derivatized Cardiolipin. Biochemistry, 2008, 47, 13699-13710.                                         | 1.2 | 27        |
| 30 | LC/MS characterization of rotenone induced cardiolipin oxidation in human lymphocytes: Implications<br>for mitochondrial dysfunction associated with Parkinson's disease. Molecular Nutrition and Food<br>Research, 2013, 57, 1410-1422. | 1.5 | 27        |
| 31 | Serineâ€47 phosphorylation of cytochrome <i>c</i> in the mammalian brain regulates cytochrome <i>c</i> oxidase and caspaseâ€3 activity. FASEB Journal, 2019, 33, 13503-13514.                                                            | 0.2 | 26        |
| 32 | Mitochondrial Redox Opto-Lipidomics Reveals Mono-Oxygenated Cardiolipins as Pro-Apoptotic Death<br>Signals. ACS Chemical Biology, 2016, 11, 530-540.                                                                                     | 1.6 | 22        |
| 33 | Targeting myeloid regulators by paclitaxel-loaded enzymatically degradable nanocups. Nanoscale, 2018, 10, 17990-18000.                                                                                                                   | 2.8 | 20        |
| 34 | Inhibition of Peroxidase Activity of Cytochrome <i>c</i> : De Novo Compound Discovery and Validation. Molecular Pharmacology, 2015, 88, 421-427.                                                                                         | 1.0 | 19        |
| 35 | NOâ—•Represses the Oxygenation of Arachidonoyl PE by 15LOX/PEBP1: Mechanism and Role in Ferroptosis.<br>International Journal of Molecular Sciences, 2021, 22, 5253.                                                                     | 1.8 | 19        |
| 36 | Payload drug vs. nanocarrier biodegradation by myeloperoxidase- and peroxynitrite-mediated oxidations: pharmacokinetic implications. Nanoscale, 2015, 7, 8689-8694.                                                                      | 2.8 | 15        |

Alexandr A Kapralov

| #  | Article                                                                                                                                                                                           | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Photoluminescence Response in Carbon Nanomaterials to Enzymatic Degradation. Analytical Chemistry, 2020, 92, 12880-12890.                                                                         | 3.2 | 11        |
| 38 | Succinobucol induces apoptosis in vascular smooth muscle cells. Free Radical Biology and Medicine, 2012, 52, 871-879.                                                                             | 1.3 | 9         |
| 39 | Nanoemitters and innate immunity: the role of surfactants and bio-coronas in<br>myeloperoxidase-catalyzed oxidation of pristine single-walled carbon nanotubes. Nanoscale, 2017, 9,<br>5948-5956. | 2.8 | 9         |
| 40 | Carbon Nanotubes: Biodegradation of Single-Walled Carbon Nanotubes by Eosinophil Peroxidase<br>(Small 16/2013). Small, 2013, 9, 2720-2720.                                                        | 5.2 | 6         |
| 41 | Direct Mapping of Phospholipid Ferroptotic Death Signals in Cells and Tissues by Gas Cluster Ion Beam<br>Secondary Ion Mass Spectrometry (GCIB IMS). Angewandte Chemie, 2021, 133, 11890-11894.   | 1.6 | 4         |
| 42 | Tocopherol modulates the effects of A23187, verapamil, and phorbol myristate acetate on RNA-polymerase activity of isolated rat liver nuclei. Biochemistry (Moscow), 1997, 62, 694-6.             | 0.7 | 1         |
| 43 | The aclion of vitamin E on RNA- and DNA-polymerase activity of rat liver mitochondria. Biopolymers and Cell, 1997, 13, 269-273.                                                                   | 0.1 | 0         |