Pascal Chartrand

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3835353/publications.pdf

Version: 2024-02-01

56 papers

4,911 citations

30 h-index 55 g-index

60 all docs

60 docs citations

times ranked

60

 $\begin{array}{c} 5332 \\ \text{citing authors} \end{array}$

#	Article	IF	CITATIONS
1	A single-molecule view of telomerase regulation at telomeres. Molecular and Cellular Oncology, 2020, 7, 1818537.	0.7	O
2	Imaging of Telomerase RNA by Single-Molecule Inexpensive FISH Combined with Immunofluorescence. STAR Protocols, 2020, 1, 100104.	1.2	5
3	Quantitative Imaging of MS2-Tagged hTR in Cajal Bodies: Photobleaching and Photoactivation. STAR Protocols, 2020, 1, 100112.	1.2	2
4	Editorial: RNA Regulation in Development and Disease. Frontiers in Genetics, 2020, 11, 430.	2.3	1
5	Single-Molecule Imaging of Telomerase RNA Reveals a Recruitment-Retention Model for Telomere Elongation. Molecular Cell, 2020, 79, 115-126.e6.	9.7	42
6	TERRA, a Multifaceted Regulator of Telomerase Activity at Telomeres. Journal of Molecular Biology, 2020, 432, 4232-4243.	4.2	25
7	Live-cell imaging reveals the dynamics and function of single-telomere TERRA molecules in cancer cells. RNA Biology, 2018, 15, 1-10.	3.1	17
8	Induction and relocalization of telomeric repeat-containing RNAs during diauxic shift in budding yeast. Current Genetics, 2018, 64, 1117-1127.	1.7	11
9	Telomerase RNA Imaging in Budding Yeast and Human Cells by Fluorescent In Situ Hybridization. Methods in Molecular Biology, 2018, 1672, 387-402.	0.9	O
10	Cell cycle–dependent spatial segregation of telomerase from sites of DNA damage. Journal of Cell Biology, 2017, 216, 2355-2371.	5.2	13
11	RNA fluorescence in situ hybridization for high-content screening. Methods, 2017, 126, 149-155.	3.8	22
12	Live-cell imaging of budding yeast telomerase RNA and TERRA. Methods, 2017, 114, 46-53.	3.8	7
13	Protrusion-localized STAT3 mRNA promotes metastasis of highly metastatic hepatocellular carcinoma cells in vitro. Acta Pharmacologica Sinica, 2016, 37, 805-813.	6.1	9
14	Special focus on telomeres and telomerase. RNA Biology, 2016, 13, 681-682.	3.1	2
15	Smc5/6 Is a Telomere-Associated Complex that Regulates Sir4 Binding and TPE. PLoS Genetics, 2016, 12, e1006268.	3.5	26
16	Telomeric repeat-containing RNA TERRA: a noncoding RNA connecting telomere biology to genome integrity. Frontiers in Genetics, 2015, 6, 143.	2.3	157
17	The Principal Role of Ku in Telomere Length Maintenance Is Promotion of Est1 Association with Telomeres. Genetics, 2014, 197, 1123-1136.	2.9	16
18	Co-transcriptional recruitment of Puf6 by She2 couples translational repression to mRNA localization. Nucleic Acids Research, 2014, 42, 8692-8704.	14.5	22

#	Article	IF	CITATIONS
19	Telomeric noncoding <scp>RNA</scp> : telomeric repeatâ€containing RNA in telomere biology. Wiley Interdisciplinary Reviews RNA, 2014, 5, 407-419.	6.4	28
20	Telomeric Noncoding RNA TERRA Is Induced by Telomere Shortening to Nucleate Telomerase Molecules at Short Telomeres. Molecular Cell, 2013, 51, 780-791.	9.7	196
21	Telomerase caught in the act. RNA Biology, 2012, 9, 1139-1143.	3.1	4
22	Mutually Exclusive Binding of Telomerase RNA and DNA by Ku Alters Telomerase Recruitment Model. Cell, 2012, 148, 922-932.	28.9	81
23	Control of cytoplasmic mRNA localization. Cellular and Molecular Life Sciences, 2012, 69, 535-552.	5.4	24
24	Live Cell Imaging of Telomerase RNA Dynamics Reveals Cell Cycle-Dependent Clustering of Telomerase at Elongating Telomeres. Molecular Cell, 2011, 44, 819-827.	9.7	103
25	Cotranscriptional assembly of mRNP complexes that determine the cytoplasmic fate of mRNA. Transcription, 2011, 2, 86-90.	3.1	10
26	Stochastic and reversible aggregation of mRNA with expanded CUG-triplet repeats. Journal of Cell Science, 2011, 124, 1703-1714.	2.0	65
27	Identification of Hammerhead Ribozymes in All Domains of Life Reveals Novel Structural Variations. PLoS Computational Biology, 2011, 7, e1002031.	3.2	124
28	Visualizing mRNAs in Fixed and Living Yeast Cells. Methods in Molecular Biology, 2011, 714, 203-219.	0.9	5
29	A screen for genes involved in respiration control and longevity in <i>Schizosaccharomyces pombe</i> . Annals of the New York Academy of Sciences, 2010, 1197, 19-27.	3.8	18
30	Designing small multiple-target artificial RNAs. Nucleic Acids Research, 2010, 38, e140-e140.	14.5	36
31	Cotranscriptional recruitment of She2p by RNA pol II elongation factor Spt4–Spt5/DSIF promotes mRNA localization to the yeast bud. Genes and Development, 2010, 24, 1914-1926.	5.9	61
32	Fission Yeast and Other Yeasts as Emergent Models to Unravel Cellular Aging in Eukaryotes. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2010, 65A, 1-8.	3.6	67
33	Pro-Aging Effects of Glucose Signaling through a G Protein-Coupled Glucose Receptor in Fission Yeast. PLoS Genetics, 2009, 5, e1000408.	3.5	89
34	Nuclear Shuttling of She2p Couples <i>ASH1</i> mRNA Localization to its Translational Repression by Recruiting Loc1p and Puf6p. Molecular Biology of the Cell, 2009, 20, 2265-2275.	2.1	62
35	TLC1 RNA nucleo-cytoplasmic trafficking links telomerase biogenesis to its recruitment to telomeres. EMBO Journal, 2008, 27, 748-757.	7.8	95
36	Local regulation of mRNA translation: new insights from the bud. Trends in Cell Biology, 2008, 18, 105-111.	7.9	97

#	Article	IF	CITATIONS
37	Using Fluorescent Proteins to Study mRNA Trafficking in Living Cells. Methods in Cell Biology, 2008, 85, 273-292.	1.1	61
38	Telomerase biogenesis: The long road before getting to the end. RNA Biology, 2008, 5, 212-215.	3.1	31
39	An E2F/miR-20a Autoregulatory Feedback Loop. Journal of Biological Chemistry, 2007, 282, 2135-2143.	3.4	521
40	Local Activation of Yeast ASH1 mRNA Translation through Phosphorylation of Khd1p by the Casein Kinase Yck1p. Molecular Cell, 2007, 26, 795-809.	9.7	119
41	Regulation of chronological aging in Schizosaccharomyces pombe by the protein kinases Pka1 and Sck2. Aging Cell, 2006, 5, 345-357.	6.7	110
42	Knowing when to let go. Nature Structural and Molecular Biology, 2005, 12, 1026-1027.	8.2	2
43	Identification of a Conserved RNA Motif Essential for She2p Recognition and mRNA Localization to the Yeast Bud. Molecular and Cellular Biology, 2005, 25, 4752-4766.	2.3	89
44	Asymmetric Sorting of Ash1p in Yeast Results from Inhibition of Translation by Localization Elements in the mRNA. Molecular Cell, 2002, 10, 1319-1330.	9.7	116
45	RNP Localization and Transport in Yeast. Annual Review of Cell and Developmental Biology, 2001, 17, 297-310.	9.4	77
46	An Exclusively Nuclear RNA-Binding Protein Affects Asymmetric Localization of ASH1 mRNA and Ash1p in Yeast. Journal of Cell Biology, 2001, 153, 307-318.	5.2	87
47	The odyssey of a regulated transcript. Rna, 2000, 6, 1773-1780.	3.5	65
48	The Role of Nuclear Cap Binding Protein Cbc1p of Yeast in mRNA Termination and Degradation. Molecular and Cellular Biology, 2000, 20, 2827-2838.	2.3	66
49	[33] Sensitive and high-resolution detection of RNA in situ. Methods in Enzymology, 2000, 318, 493-506.	1.0	51
50	Structural elements required for the localization of ASH1 mRNA and of a green fluorescent protein reporter particle in vivo. Current Biology, 1999, 9, 333-338.	3.9	183
51	Localization of ASH1 mRNA Particles in Living Yeast. Molecular Cell, 1998, 2, 437-445.	9.7	1,475
52	Modeling active RNA structures using the intersection of conformational space: Application to the lead-activated ribozyme. Rna, 1998, 4, 739-749.	3.5	27
53	Effect of Structural Modifications on the Activity of the Leadzymeâ€. Biochemistry, 1997, 36, 3145-3150.	2.5	32
54	An oligodeoxyribonucleotide that supports catalytic activity in the hammerhead ribozyme domain. Nucleic Acids Research, 1995, 23, 4092-4096.	14.5	28

#	Article	IF	CITATIONS
55	The hammerhead RNA domain, a model ribozyme. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1993, 1216, 345-359.	2.4	92
56	Minimum ribonucleotide requirement for catalysis by the RNA hammerhead domain. Biochemistry, 1992, 31, 5005-5009.	2.5	121