
Michelle L Lamb

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3834939/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mechanistic Insights into a CDK9 Inhibitor Via Orthogonal Proteomics Methods. ACS Chemical Biology, 2022, 17, 54-67.	3.4	6
2	Discovery of a Series of 7-Azaindoles as Potent and Highly Selective CDK9 Inhibitors for Transient Target Engagement. Journal of Medicinal Chemistry, 2021, 64, 15189-15213.	6.4	12
3	Script-based automation of analytical instrument software tasks. SLAS Technology, 2021, , .	1.9	0
4	Discovery of AZD4573, a Potent and Selective Inhibitor of CDK9 That Enables Short Duration of Target Engagement for the Treatment of Hematological Malignancies. Journal of Medicinal Chemistry, 2020, 63, 15564-15590.	6.4	57
5	The structure of human GCN2 reveals a parallel, back-to-back kinase dimer with a plastic DFG activation loop motif. Biochemical Journal, 2020, 477, 275-284.	3.7	13
6	Free Ligand 1D NMR Conformational Signatures To Enhance Structure Based Drug Design of a Mcl-1 Inhibitor (AZD5991) and Other Synthetic Macrocycles. Journal of Medicinal Chemistry, 2019, 62, 9418-9437.	6.4	25
7	Discovery of 2,6-disubstituted pyrazine derivatives as inhibitors of CK2 and PIM kinases. Bioorganic and Medicinal Chemistry Letters, 2018, 28, 1336-1341.	2.2	13
8	Structureâ€Based Design of Selective Noncovalent CDK12 Inhibitors. ChemMedChem, 2018, 13, 231-235.	3.2	37
9	Discovery of Mcl-1-specific inhibitor AZD5991 and preclinical activity in multiple myeloma and acute myeloid leukemia. Nature Communications, 2018, 9, 5341.	12.8	356
10	Pharmacological Inhibition of PARP6 Triggers Multipolar Spindle Formation and Elicits Therapeutic Effects in Breast Cancer. Cancer Research, 2018, 78, 6691-6702.	0.9	36
11	Targeting adenosine A _{2A} receptor antagonism for treatment of cancer. Expert Opinion on Drug Discovery, 2018, 13, 997-1003.	5.0	49
12	Deconvoluting Kinase Inhibitor Induced Cardiotoxicity. Toxicological Sciences, 2017, 158, 213-226.	3.1	45
13	Structure Based Design of Non-Natural Peptidic Macrocyclic Mcl-1 Inhibitors. ACS Medicinal Chemistry Letters, 2017, 8, 239-244.	2.8	53
14	Inhibition of Mcl-1 through covalent modification of a noncatalytic lysine side chain. Nature Chemical Biology, 2016, 12, 931-936.	8.0	153
15	Modulating the strength of hydrogen bond acceptors to achieve low Caco2 efflux for oral bioavailability of PARP inhibitors blocking centrosome clustering. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 4775-4780.	2.2	6
16	Pyrimidinone Nicotinamide Mimetics as Selective Tankyrase and Wnt Pathway Inhibitors Suitable for in Vivo Pharmacology. ACS Medicinal Chemistry Letters, 2015, 6, 254-259.	2.8	51
17	Evaluating Free Energies of Binding and Conservation of Crystallographic Waters Using SZMAP. Journal of Chemical Information and Modeling, 2015, 55, 1552-1565.	5.4	64
18	Discovery of AZ0108, an orally bioavailable phthalazinone PARP inhibitor that blocks centrosome clustering. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 5743-5747.	2.2	52

MICHELLE L LAMB

#	Article	IF	CITATIONS
19	Discovery of Potent KIFC1 Inhibitors Using a Method of Integrated High-Throughput Synthesis and Screening. Journal of Medicinal Chemistry, 2014, 57, 9958-9970.	6.4	34
20	Ensemble-Based Docking Using Biased Molecular Dynamics. Journal of Chemical Information and Modeling, 2014, 54, 2127-2138.	5.4	53
21	AZD1208, a potent and selective pan-Pim kinase inhibitor, demonstrates efficacy in preclinical models of acute myeloid leukemia. Blood, 2014, 123, 905-913.	1.4	205
22	Discovery of novel Jak2–Stat pathway inhibitors with extended residence time on target. Bioorganic and Medicinal Chemistry Letters, 2013, 23, 3105-3110.	2.2	20
23	Discovery and Mechanistic Study of a Small Molecule Inhibitor for Motor Protein KIFC1. ACS Chemical Biology, 2013, 8, 2201-2208.	3.4	87
24	Discovery of novel benzylidene-1,3-thiazolidine-2,4-diones as potent and selective inhibitors of the PIM-1, PIM-2, and PIM-3 protein kinases. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 4599-4604.	2.2	94
25	Discovery of Disubstituted Imidazo[4,5- <i>b</i>]pyridines and Purines as Potent TrkA Inhibitors. ACS Medicinal Chemistry Letters, 2012, 3, 705-709.	2.8	39
26	Discovery of 5-Chloro- <i>N</i> ² -[(1 <i>S</i>)-1-(5-fluoropyrimidin-2-yl)ethyl]- <i>N</i> ⁴ -(5-methyl-] (AZD1480) as a Novel Inhibitor of the Jak/Stat Pathway. Journal of Medicinal Chemistry, 2011, 54, 262-276.	l <ixl.k≮/i>-∣</i	pyr aze l-3-yl)py
27	In vitro and in vivo evaluation of 6-aminopyrazolyl-pyridine-3-carbonitriles as JAK2 kinase inhibitors. Bioorganic and Medicinal Chemistry Letters, 2011, 21, 2958-2961.	2.2	14
28	AZD1208, a Novel, Potent and Selective Pan PIM Kinase Inhibitor, Demonstrates Efficacy in Models of Acute Myeloid Leukemia. Blood, 2011, 118, 1540-1540.	1.4	4
29	Replacement of pyrazol-3-yl amine hinge binder with thiazol-2-yl amine: Discovery of potent and selective JAK2 inhibitors. Bioorganic and Medicinal Chemistry Letters, 2010, 20, 1669-1673.	2.2	24
30	Discovery of pyrazol-3-ylamino pyrazines as novel JAK2 inhibitors. Bioorganic and Medicinal Chemistry Letters, 2009, 19, 6524-6528.	2.2	25
31	Trk kinase inhibitors as new treatments for cancer and pain. Expert Opinion on Therapeutic Patents, 2009, 19, 305-319.	5.0	102
32	Identification of 4-Aminopyrazolylpyrimidines as Potent Inhibitors of Trk Kinases. Journal of Medicinal Chemistry, 2008, 51, 4672-4684.	6.4	73
33	Accurate Prediction of the Relative Potencies of Members of a Series of Kinase Inhibitors Using Molecular Docking and MM-GBSA Scoring. Journal of Medicinal Chemistry, 2006, 49, 4805-4808.	6.4	575
34	Design of a gene family screening library targeting G-protein coupled receptors. Journal of Molecular Graphics and Modelling, 2004, 23, 15-21.	2.4	9
35	SitePrint:  Three-Dimensional Pharmacophore Descriptors Derived from Protein Binding Sites for Family Based Active Site Analysis, Classification, and Drug Design. Journal of Chemical Information and Computer Sciences, 2004, 44, 2190-2198.	2.8	11
36	Performance of 3D-Database Molecular Docking Studies into Homology Models. Journal of Medicinal Chemistry, 2004, 47, 764-767.	6.4	113

MICHELLE L LAMB

#	Article	IF	CITATIONS
37	A Computational Ensemble Pharmacophore Model for Identifying Substrates of P-Glycoprotein. Journal of Medicinal Chemistry, 2002, 45, 1737-1740.	6.4	186
38	Design, docking, and evaluation of multiple libraries against multiple targets. Proteins: Structure, Function and Bioinformatics, 2001, 42, 296-318.	2.6	66
39	Estimation of the binding affinities of FKBP12 inhibitors using a linear response method. Bioorganic and Medicinal Chemistry, 1999, 7, 851-860.	3.0	75
40	Investigations of Neurotrophic Inhibitors of FK506 Binding Protein via Monte Carlo Simulations. Journal of Medicinal Chemistry, 1998, 41, 3928-3939.	6.4	31
41	Prediction of Binding Affinities for TIBO Inhibitors of HIV-1 Reverse Transcriptase Using Monte Carlo Simulations in a Linear Response Method. Journal of Medicinal Chemistry, 1998, 41, 5272-5286.	6.4	87
42	Computational approaches to molecular recognition. Current Opinion in Chemical Biology, 1997, 1, 449-457.	6.1	124